Skip to main content

Advertisement

Log in

SaluCartilage™—ein neuer künstlicher Knorpelersatz für die arthroskopische Behandlung der fokalen Osteonekrose

  • Osteonekrose
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Die Behandlung chondraler und osteochondraler Defekte bereitet trotz vieler verschiedener Behandlungsoptionen immer noch therapeutische Probleme. Shaving, Débridement, Drilling, Mikrofrakturierung und Abrasionsarthroplastik bewirken nur eine kurzfristige Symptombesserung oder rufen die Bildung eines minderwertigen Ersatzknorpels hervor. Die gängige Technik der Knorpel-Knochen-Transplantation (OATS) erfreut sich sehr positiver Ergebnisse, ist jedoch mit der Morbidität durch die Entnahmedefekte sowie der notwendigen Eröffnung eines 2. Gelenks bei Defekten an Sprunggelenk, Schulter oder Ellenbogen vergesellschaftet.

In dieser Studie wird erstmals ein neues Verfahren, die Implantation von künstlichem Knochen-Knorpel-Ersatz aus Polyvinyl-Alkohol-Hydrogel (SaluCartilage™) vorgestellt. Als vorteilhaft erweisen sich das Fehlen des Entnahmedefekts, die Beschränkung auf nur ein zu operierendes Gelenk sowie die sofortige Belastbarkeit ohne langfristige Rehabilitation. Berichtet wird über bisher 12 operierte Patienten, mit jedoch sehr kurzem follow-up von durchschnittlich 2,8 Monaten, Langzeitergebnisse stehen noch aus.

Abstract

The treatment of osteochondral defects still remains a therapeutic challenge for the orthopaedic surgeon. Procedures like shaving, débridement, drilling, microfracturing and abrasion arthroplasty just relieve symptoms for a certain period of time or create fibrocartilage tissue with minor mechanical properties. The common autologous osteochondral transplantation technique (OATS) shows encouraging results, nevertheless the morbidity caused by the donor defects as well as by opening a second joint in case of defects of the shoulder, elbow or ankle joint remains an unsolved problem.

This report presents a new method of cartilage treatment by implantation of artificial osteochondral substitute made of polyvinyl-alcohol-hydrogel (SaluCartilage™). Advantages are the absence of a donor defect, the possibility of immediate postoperative wheightbearing without extensive rehabilitation as well as the limitation on just one joint to be operated on. First results of 12 patients are being presented with a so far short average follow-up of 2,8 months. Long-term results are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.
Abb. 4a,b.

Literatur

  1. Bobic V (1996) Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc 3:262–264

    CAS  PubMed  Google Scholar 

  2. Brittberg M, Faxen E, Peterson L (1994) Carbon fiber scaffolds in the treatment of early knee osteoarthritis. A prospective 4-year-follow-up of 37 patients. Clin Orthop 307:155–164

    PubMed  Google Scholar 

  3. Buckwalter JA, Rosenberg L, Coutts R, Hunzider E, Reddi A, Mow V (1988) Articular cartilage: injury and repair. In: Woo SY, Buckwalter JA (eds) Injury and repair of musculoskeletal soft tissues. AAOS, Park Ridge, IL, pp 465–482

  4. Buckwalter JA, Lohmander S (1994) Current concepts review: operative treatment of osteoarthrosis. J Bone Joint Surg 76A: 1405–1418

    Google Scholar 

  5. Burkart A, Imhoff AB (2000) Bildgebung nach autologer Chondrozytentransplantation: Korrelation kernspintomographischer, histologischer und arthroskopischer Befunde. Orthopäde 29:135–144

    Google Scholar 

  6. Burkart AC, Schoettle PB, Imhoff AB (2001) Operative Therapiemöglichkeiten des Knorpelschadens. Unfallchirurg 104:798–807

    Article  CAS  PubMed  Google Scholar 

  7. Chang YS, Oka M, Gu HO, Kobayashi M, Toguchida J, Nakamura T, Hayami T (1997) Histologic comparison of tibial articular surfaces against rigid materials and artificial cartilage. J Biomed Mater Res 37:51–59

    Article  CAS  PubMed  Google Scholar 

  8. Czitrom AA, Keating S, Groß AE (1990) The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg 72(A):574–581

    CAS  PubMed  Google Scholar 

  9. Furukawa T, Eyre DR, Koide S (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg 62A:79–89

    Google Scholar 

  10. Hangody L, Karpati Z, Szigeti I, Sükösd L (1996) Clinical experience with the mosaic technique. Rev Osteol 4:32–36

    Google Scholar 

  11. Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaic-plasty for the treatment of femoral condylar articular defects. Knee Surg Sports Traumatol Arthrosc 3:262–267

    Article  Google Scholar 

  12. Hangody L, Feczko P, Bartha L, Bodo G, Kish G (2001) Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop 10 [suppl 391]:328–336

    Google Scholar 

  13. Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg 78A:721

    Google Scholar 

  14. Hyon SH, Cha WI, Ikada Y (1989) Preparation of transparent poly (vinyl alcohol) hydrogel. Polymer Bulletin 22:119–122

    CAS  Google Scholar 

  15. Imhoff A, Öttl G, Burkart A, Traub S (1999) Osteochondrale autologe Transplantation an verschiedenen Gelenken. Orthopäde 28:33–45

    Google Scholar 

  16. Imhoff AB, Oettl GM (1999) Arthroscopic and open techniques for transplantation of osteochondral autografts and allografts in various joints. Surg Technol Internat 7:249–252

    Google Scholar 

  17. Imhoff A, Öttl GM, Schoettle P, Agneskirchner J, Burkart A (2000) Arthroscopic and open techniques for transplantation of osteochondral autografts and allografts in different joints. In: Grifka J, Ogilvie-Harris J (eds) Osteoarthritis. Springer, Berlin Heidelberg New York, pp 103–111

  18. Imhoff AB, Martinek V (2001) Gene therapy in cartilage repair. Eur Instruct Course Lect (EFORT) 5:18–23

    Google Scholar 

  19. Kim H, Moran M, Keeley FW et al. (1991) The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion: an experimental investigation in rabbits. J Bone Joint Surg 73A:1301–1315

    Google Scholar 

  20. Kim H, Schmid A, Schmid F (1991) Results after cartilage shaving studied by electron microscopy. Am J Sports Med 15:386–387

    Google Scholar 

  21. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg 64A:460–466

    Google Scholar 

  22. Matsusue Y, Yamamuro T, Hama H (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–321

    CAS  PubMed  Google Scholar 

  23. Messner K, Maletius W (1996) The long term prognosis for severe damage to weight bearing cartilage in the knee. Acta Orthop Scand 67:165–168

    CAS  PubMed  Google Scholar 

  24. Minas T (1998) Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am J Orthop 27(11):739–744

    CAS  PubMed  Google Scholar 

  25. Mitchell N, Shephard N (1976) The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg 58A:230–233

    Google Scholar 

  26. Mitchell N, Shephard N (1987) Effect of patellar shaving in the rabbit. J Orthop Res 5:388–392

    CAS  PubMed  Google Scholar 

  27. Nishinari K, Watase M, Ogino K, Nambu M (1983) Simple extension of poly (vinyl alcohol) gels. Polym Commun 24:345–347

    CAS  Google Scholar 

  28. Noguchi T, Yamamuro T, Oka M, Kumar P, Kotoura Y, Hyon SY, Ikada Y (1991) J Applied Biomat 2:101–107

    CAS  Google Scholar 

  29. Otte P (1972) Die Biologie des Knorpels in Hinblick auf die Transplantation. Z Orthop 110:677–685

    CAS  PubMed  Google Scholar 

  30. Oka M, Noguchi T, Kumar P, Ikeuchi K, Yamamuro T, Hyon SH, Ikada Y (1990) Development of an artificial articular cartilage. Clin Mater 6:361–381

    CAS  PubMed  Google Scholar 

  31. Peterson L (1997) Autologous chondrocyte transplantation: 2–10 year follow-up in 219 patients. Presentation abstract. AAOS

    Google Scholar 

  32. Peterson L (1998) Autologous chondrocyte transplantation. Articular cartilage repair, regeneration and transplantation symposium presented at the 65th Annual Meeting of the American Academy of Orthopedic Surgeons, New Orleans/LA

  33. Rand JA, Illstrupp DM (1991) Survivorship analysis of total knee arthroplasty. Cumulative rates of survival of 9200 total knee arthroplasties. J Bone Joint Surg 73A:397–409

    Google Scholar 

  34. Rodrigo JJ, Steadman RJ, Siliman JF, Fulstone HA (1994) Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 7:109–116

    Google Scholar 

  35. Rudert M, Wirth CJ (1998) Knorpelregeneration und Knorpelersatz. Orthopäde 27:309–321

    Google Scholar 

  36. Sasada T, Takahashi M, Watakabe M, Mabuchi K, Tsukamoto Y, Nanbu M (1985) Frictional behavior of a total hip prosthesis containing artificial articular cartilage. J Jpn Soc Biomat 3:151–157

    Google Scholar 

  37. Steadman JR, Rodkey WG, Singleton SB, Mc-Illwraith CW, Briggs KK (2000) Microfracture procedure for treatment of full thickness chondral defects: technique, clinical results and current basic science status. In: Harner CD, Vince KG, Fu FH (eds) Techniques in knee surgery. Williams & Wilkins, Media/PA 2000

  38. Wagner H (1964) Operative Behandlung der Osteochondrosis dissecans des Kniegelenkes. Z Orthopädie 98:333–355

    Google Scholar 

  39. Watase M, Nishinari K (1985) Large deformation of hydrogels of poly (vinyl alcohol) hydrogel, agarose and kappa-carrageenan. Makromol Chem 186:1081–1086

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Imhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyerlein, J., Imhoff, A.B. SaluCartilage™—ein neuer künstlicher Knorpelersatz für die arthroskopische Behandlung der fokalen Osteonekrose. Arthroskopie 16, 34–39 (2003). https://doi.org/10.1007/s00142-003-0206-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-003-0206-2

Schlüsselwörter

Keywords

Navigation