Skip to main content
Log in

Grain-size assessment of fine and coarse aggregates through bipolar area morphology

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new methodology for computing grey-scale granulometries and estimating the mean size of fine and coarse aggregates. The proposed approach employs area morphology and combines the information derived from both openings and closings to determine the size distribution. The method, which we refer to as bipolar area morphology (BAM), is general and can operate on particles of different size and shape. The effectiveness of the procedure was validated on a set of 13 classes of aggregates of size ranging from 0.125 to 16 mm and made a comparison with standard, fixed-shape granulometry. In the experiments our model consistently outperformed the standard approach and predicted the correct size class with overall accuracy over 92 %. Tests on three classes from real samples also confirmed the potential of the method for application in real scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. To access the page: user \(=\) bipolar, psw \(=\) morphology.

Abbreviations

BAM:

Bipolar area morphology

PC:

Primary classes

RC:

Random classes

SC:

Secondary classes

\(\lambda \) :

Sieve scale (pixel)

\(\phi _\mathrm{m}\), \(\phi _\mathrm{M}\), \(\phi \) :

Minimum, maximum and expected true grain-size (mm)

\(\hat{\phi }\) :

Response of image-based granulometry (pixel)

\(\bar{\phi }\) :

Estimated mean grain size (mm)

\(\sigma \) :

Standard deviation

\(A_p\) :

Classification accuracy for the pth problem

\(\bar{A}\) :

Average classification accuracy

C :

Number of classes

\(\mathcal {C}\) :

Morphological closing

H :

Discrete cumulative size distribution

h :

Discrete pattern spectrum

\(\mathbf {I}\) :

Input image

\(\mathcal {O}\) :

Morphological opening

\(\mathcal {OC}\) :

Combined morphological opening and closing (bipolar morphology)

\(V(\mathbf {I})\) :

Volume of the input image (sum of pixels’ values)

P :

Number of subdivisions into train and test set (also referred to as number of problems or number of folds)

\(R^2\) :

Coefficient of determination

s :

Standard error

T :

Number of training samples

X :

Height of the input image

Y :

Width of the input image

References

  1. Buscombe, D.: Estimation of grain-size distributions and associated parameters from digital images of sediment. Sediment. Geol. 210(1–2), 1–10 (2008)

    Article  Google Scholar 

  2. Frančišković-Bilinskia, S., Bilinski, H., Vdović, N., Balagurunathan, Y., Dougherty, E.: Application of image-based granulometry to siliceous and calcareous estuarine and marine sediments. Estuar. Coast. Shelf Sci. 58(2), 227–239 (2003)

    Article  Google Scholar 

  3. Pina, P., Lira, C.: Sediment image analysis as a method to obtain rapid and robust size measurements. J. Coast. Res. 56, 1562–1566 (2009)

    MATH  Google Scholar 

  4. Naceri, A., Hamina, M.: Use of waste brick as a partial replacement of cement in mortar. Waste Manag. 29(8), 2378–2384 (2009)

    Article  Google Scholar 

  5. Cervera Gontard, L., Ozkaya, D., Dunin-Borkowski, R.E.: A simple algorithm for measuring particle size distributions on an uneven background from tem images. Ultramicroscopy 111(2), 101–106 (2011)

    Article  Google Scholar 

  6. Khatun, M., Gray, A., Marshall, S.: Classification of ordered texture images using regression modelling and granulometric features. In: 15th Irish Machine Vision and Image Processing Conference (IMVIP 2011), pp. 64–69. Dublin (2011)

  7. Khatun, M., Gray, A., Marshall, S.: Morphological granulometry for classification of evolving and ordered texture images. In: Proceedings of the 19th European Signal Processing Conference (EUSIPCO 2011), pp. 759–763. Barcelona (2011)

  8. Di Maria, F., Micale, C., Sordi, A., Cirulli, G., Marionni, M.: Urban mining: quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste. Waste Manag. 33, 2594–2599 (2013)

    Article  Google Scholar 

  9. European Commission: Directive 2008/98/EC on waste (Waste Framework Directive). http://ec.europa.eu/environment/waste/framework. Accessed 21 May 2014 (2008)

  10. Rao, A., Jha, K., Misra, S.: Use of aggregates from recycled construction and demolition waste in concrete. Resour. Conserv. Recycl. 50(1), 71–81 (2007)

    Article  Google Scholar 

  11. British Standards Institution: BS EN 933-1. Tests for geometrical properties of aggregates—Part 1: Determination of particle size distribution—sieving method (2012)

  12. ISO 13320: Particle size analysis—laser diffraction methods. International Organization for Standardization (2009)

  13. Detert, M., Weitbrecht, V.: User guide to gravelometric image analysis by BASEGRAIN. In: Fukuoka, S., Nakagawa, H., Sumi, T., Zhang, H. (eds.) Advances in Science and Research, pp. 1789–1795. Taylor & Francis, New York (2013)

  14. Deidun, A., Gauci, R., Schembri, J., Egina, E., Gauci, A., Gianni, F., Gutierrez, J.A., Sciberras, A., Sciberras, J.: Comparative median grain size assessment through three different techniques for sandy beach deposits on the Maltese Islands (central Mediterranean). J. Coast. Res. 65, 1757–1761 (2013)

    Google Scholar 

  15. Urbanski, J., Wochna, A., Herman, A.: Automated granulometric analysis and grain-shape estimation of beach sediments using object-based image analysis. J. Coast. Res. 64, 1745–1759 (2011)

    Google Scholar 

  16. Buscombe, D., Masselink, G.: Grain-size information from the statistical properties of digital images of sediment. Sedimentology 56(2), 421–438 (2009)

    Article  Google Scholar 

  17. Rubin, D.: A simple autocorrelation algorithm for determining grain size from digital images of sediment. J. Sedim. Res. 74(1), 160–165 (2004)

    Article  Google Scholar 

  18. Murtagh, F., Qiao, X., Crookes, D., Walsh, P., Basheer, P., Long, A., Starck, J.L.: A machine vision approach to the grading of crushed aggregate. Mach. Vis. Appl. 16(4), 229–235 (2005)

    Article  Google Scholar 

  19. Chen, Y., Dougherty, E.: Gray-scale morphological granulometric texture classification. Opt. Eng. 33(8), 2713–2722 (1994)

    Article  Google Scholar 

  20. Pina, P., Lira, C., Lousada, M.: In-situ computation of granulometries of sedimentary grains—some preliminary results. J. Coast. Res. 64, 1727–1730 (2011)

    Google Scholar 

  21. Salehizadeh, M., Sadeghi, M.: Size distribution estimation of stone fragments via digital image processing. Advances in visual computing. In: Proceedings of the 6th International Symposium, ISVC 2010. Lecture Notes in Computer Science, vol. 6455, pp. 329–338. Springer, Las Vegas (2012)

  22. Bianconi, F., González, E., Fernández, A., Saetta, S.A.: Apparato per acquisire una pluralità di immagini di almeno un corpo e relativo metodo (Apparatus to acquire a plurality of superficial images of at least one body and related method). IT Patent No. 0001413266. Filed on 25 July 2012; granted on 16 January 2015 (2015)

  23. Soille, P.: Morphological Image Analysis, 2nd edn. Springer, New York (2003)

  24. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

  25. Southam, P., Harvey, R.: Texture classification via morphological scale-space: Tex-Mex features. J. Electron. Imaging 18(4), 043007-1-16 (2009)

  26. Luengo Hendriks, C., van Kempen, G., van Vliet, L.: Improving the accuracy of isotropic granulometries. Pattern Recognit. Lett. 28(7), 865–872 (2007)

    Article  Google Scholar 

  27. Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011). doi:10.1007/s00138-010-0253-4

    Article  Google Scholar 

  28. Bianconi, F., Fernández, A.: Rotation invariant co-occurrence features based on digital circles and discrete Fourier transform. Pattern Recognit. Lett. 48, 34–41 (2014)

    Article  Google Scholar 

  29. Jones, R., Soille, P.: Periodic lines: definition, cascades, and application to granulometries. Pattern Recognit. Lett. 17(10), 1057–1063 (1996)

    Article  Google Scholar 

  30. Acha, S., Mukherjee, D.: Scale space classification using area morphology. IEEE Trans. Image Process. 9(4), 623–635 (2000)

    Article  Google Scholar 

  31. Newbold, P., Carlson, W., Thorne, B.: Statistics for Business and Economics, 7th edn. Pearson Education International, Upper Saddle River (2007)

    Google Scholar 

  32. Law, A., Kelton, W.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)

  33. Bipolar area morphology: Code and data related to this paper. http://dismac.dii.unipg.it/bam. Accessed 16 March 2015 (2014)

  34. Mora, C., Kwan, A., Chan, H.: Particle size distribution analysis of coarse aggregates using digital image processing. Cement Concr. Res. 28(6), 921–932 (1998)

    Article  Google Scholar 

  35. Fredembach, C., Finlayson, G.: The 1.5D sieve algorithm. Pattern Recognit. Lett. 29(5), 629–636 (2008)

    Article  Google Scholar 

  36. Bosson, A., Harvey, R.W.: Using occlusion models to evaluate scale-space processors. In: Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 615–619, Chicago (1998)

  37. Southam, P., Harvey, R.W.: Texture granularities. In: Roli, F., Vitulano, S. (eds.) Image Analysis and Processing—ICIAP 2005. Lecture Notes in Computer Science, vol. 3617, pp. 304–311, Cagliari (2005)

  38. Bordenave, C., Gousseau, Y., Roueff, F.: The dead leaves model: a general tessellation modeling occlusion. Adv. Appl. Probab. 38(1), 31–46 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bianconi.

Additional information

This work was supported by the European Commission under project LIFE12 ENV/IT/000411 ‘EMaRES—Enhanced Material Recovery and Environmental Sustainability for small scale waste management systems’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianconi, F., Di Maria, F., Micale, C. et al. Grain-size assessment of fine and coarse aggregates through bipolar area morphology. Machine Vision and Applications 26, 775–789 (2015). https://doi.org/10.1007/s00138-015-0692-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0692-z

Keywords

Navigation