Skip to main content
Log in

Deformable image registration based on elastodynamics

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel method for 2D inter-subject non-rigid image registration. It is motivated by the ideas derived from elastodynamics which is the subclass of linear elastic theory. We propose to model the non-rigid deformations as elastic waves which are characterized by elastodynamics wave equation. Our registration method is formulated in a multi-resolution manner such that it is able to recover significant deformations. The proposed scheme recovers local (non-linear) as well as global deformations. The results of image registration by the proposed technique were validated via similarity measures for real MR brain images, BrainWeb dataset and MR prostate images. We have also used overlap measures (Jaccard distance, Dice coefficient and Overlap coefficient) over the segmented deep-brain structures including: lateral and third ventricles, putamen and caudate nucleus for real image dataset to further validate our proposed registration scheme. The proposed scheme was also compared with demons, Level set and free-form deformations (cubic B-spline) algorithms implemented in ITK toolkit and symmetric normalization method available in ANTs software package. Our proposed algorithm shows marked improvement of the inter-subject non-rigid registration, both qualitatively and quantitatively, over the four above-mentioned methods. This comparison was performed on all the three types of datasets mentioned above. 2D synthetic experiments comprising of Patch-‘C’, Square–Rectangle and Circle-‘C’ were also performed with our algorithm and compared with other four methods. Both qualitative and quantitative results show that our method performs better than the other four methods. Results suggest that our proposed algorithm has improved accuracy over lemons, level set and free-form deformations (ITK implemented) and symmetric normalization method (ANTs based), tested over two types of brain and one prostate MRI. The commonly used synthetic experiments also suggest the superiority of our proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. available online: https://imaging.nci.nih.gov/ncia/login.jsf.

  2. These ranges are determined using cross-validation method.

  3. available online at: http://picsl.upenn.edu/software/ants/.

References

  1. Wei, Q., Hu, Y., Gelfand, G., MacGregor, J.: Segmentation of lung lobes in high resolution isotropic CT images. IEEE Trans. Biomed. Eng. 56, 1383–1393 (2009)

    Article  Google Scholar 

  2. Bauer, S., May, C., Dionysiou, D., Stamatakos, G., Buchler, P., Reyes, M.: Multiscale modeling for image analysis of brain tumor studies. IEEE Trans. Biomed. Eng. 59, 25–29 (2012)

    Article  Google Scholar 

  3. Al-Mayah, A., Moseley, J., Hunter, S., Velec, M., Chau, L., Breen, S., Brock, K.: Biomechanical-based image registration for head and neck radiation treatment. Phys. Med. Biol. 55, 6491–6500 (2010)

    Article  Google Scholar 

  4. Geets, X., Daisne, J.F., Tomsej, M., Duprez, T., Lonneux, M., Gregoire, V.: Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother. Oncol. 78, 291–297 (2006)

    Article  Google Scholar 

  5. Geets, X., Tomsej, M., Lee, J.A., Duprez, T., Coche, E., Cosnard, G., Lonneux, M., Gregoire, V.: Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother. Oncol. 85, 105–115 (2007)

    Article  Google Scholar 

  6. Schaly, B., Kempe, J.A., Bauman, G.S., Battista, J.J., Dyk, J.V.: Tracking the dose distribution in radiation therapy by accounting for variable anatomy. Phys. Med. Biol. 49, 791–805 (2004)

    Article  Google Scholar 

  7. de Xivry, O., Janssens, G., Bosmans, G., De Craene, M., Dekker, A., Buijsen, J., van Baardwijk, A., De Ruysscher, D., Macq, B., Lambin, P.: Tumour delineation and cumulative dose computation in radiotherapy based on deformable registration of respiratory correlated CT images of lung cancer patients. Radiother. Oncol. 85, 232–238 (2007)

    Article  Google Scholar 

  8. Castadot, P., Lee, J.A., Parraga, A., Geets, X., Macq, B., Gregoire, V.: Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors. Radiother. Oncol. 89(1), 1–12 (2008)

    Article  Google Scholar 

  9. Shen, R., Cheng, I., Basu, A.: Cross-scale coefficient selection for volumetric medical image fusion. IEEE Trans. Biomed. Eng. 60, 1069–1079 (2013)

    Article  Google Scholar 

  10. Klein, S., Loog, M., Lijn, F., Heijer, T., Hammers, A., Bruijne, M., Lugt, A., Duin, R., Breteler, M., Niessen, W.: Early diagnosis of dementia based on inter-subject whole-brain dissimilarities. In: International Symposium on Biomedical Imaging: From Nano to Macro, 249–252. Netherlands (2010)

  11. Wu, X., Dibiase, S.J., Gullapalli, R., Cedric, X.Y.: Deformable image registration for the use of magnetic resonance spectroscopy in prostate treatment planning. Int. J. Radiat. Oncol. 58(5), 1577–1583 (2004)

    Article  Google Scholar 

  12. Hu, Y., Ahmed, H., Allen, C., Pendse, D., Sahu, M., Emberton, M., Hawkes, D., Barratt, D.: MR to ultrasound image registration for guiding prostate biopsy and interventions. Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds). In: Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 5761, 787–794 (2010)

  13. Ou, Y., Akbari, H., Bilello, M., Da, X., Davatzikos, C.: Comparative evaluation of registration algorithms in different brain databases with varying difficulty: results and insights. IEEE Trans. Med. Imaging 33(10), 2039–2065 (2014)

    Article  Google Scholar 

  14. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27, 111–128 (2008)

    Article  Google Scholar 

  15. Broit, C.: Optimal registration of deformed images. Ph.D. dissertation, University of Pennsylvania, Philadelphia (1981)

  16. Christensen, G.E., Rabbitt, R., Miller, M.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5, 1435–1447 (1996)

    Article  Google Scholar 

  17. Thirion, J.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2, 243–260 (1998)

    Article  Google Scholar 

  18. Fischer, B., Modersitzki, J.: Fast diffusion registration. AMS Contemp. Math. Inverse Problems Image Anal. Med. Imaging 313, 117–129 (2002)

    MathSciNet  Google Scholar 

  19. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: International Conference of Medical Image Computing and Computer-Assisted Intervention, 319–326 (2007)

  20. Henn, S.: A full curvature based algorithm for image registration. J. Math. Imaging Vis. 24, 195–208 (2006)

    Article  MathSciNet  Google Scholar 

  21. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bookstein, F.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11, 567–585 (1989)

    Article  MATH  Google Scholar 

  23. Buhmann, M.: Radial basis functions. Acta Numer. 9, 1–38 (2000)

    Article  MathSciNet  Google Scholar 

  24. Zagorchev, L., Goshtasby, A.: A comparative study of transformation functions for non-rigid image registration. IEEE Trans. Image Process. 15, 529–538 (2006)

    Article  Google Scholar 

  25. Rueckert, D., Sonoda, L., Hayes, I.C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 8, 712–721 (1999)

    Article  Google Scholar 

  26. Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elastic registration of medical images. Image Vis. Comput. 19(1–2), 87–96 (2001)

    Article  Google Scholar 

  27. Wu, Z.: Compactly supported positive definite radial functions. Adv. Comput. Math. 4(1), 283–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Davis, M.H., Khotanzad, A., Flaming, D.P., Harms, S.E.: A physics-based coordinate transformation for 3D image matching. IEEE Trans. Med. Imaging 16(3), 317–328 (1997)

    Article  Google Scholar 

  29. Christensen, G.E., Jhonson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001)

    Article  Google Scholar 

  30. Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using wavelet-based motion model. Int. J. Comput. Vis. 38(2), 129–152 (2000)

    Article  MATH  Google Scholar 

  31. Glocker, B., Komodakis, N., Tziritasc, G., Navabb, N., Paragios, N.: Dense image registration through mrfs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

    Article  Google Scholar 

  32. So, R.W.K., Tang, T.W.H., Chung, A.C.S.: Non-rigid image registration of brain magnetic resonance images using graph-cuts. Pattern Recognit. 44(10), 2450–2467 (2011)

    Article  Google Scholar 

  33. Liao, S., Chung, A.C.S.: Feature based non-rigid brain MR image registration with symmetric alpha stable filters. IEEE Trans. Med. Imaging 29(1), 106–119 (2010)

    Article  Google Scholar 

  34. Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21, 1421–1439 (2002)

    Article  Google Scholar 

  35. Gholipour, A., Kehtarnavaz, N., Yousefi, S., Gopinath, K., Briggs, R.: Symmetric deformable image registration via optimization of information theoretic measures. Image Vis. Comput. 28, 965–975 (2010)

    Article  Google Scholar 

  36. Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recognit. 32, 129–149 (1999)

    Article  Google Scholar 

  37. Cazoulat, G., Simon, A., Dumenil, A., Gnep, K., Crevoisier, R.D., Acosta, O., Haigron, P.: Surface-constrained nonrigid registration for dose monitoring in prostate cancer radiotherapy. IEEE Trans. Med. Imaging 33(7), 1464–1474 (2014)

    Article  Google Scholar 

  38. Vemuri, B.C., Ye, J., Chen, Y., Leonard, C.M.: Image registration via level-set motion: applications to atlas-based registration. Med. Image Anal. 7, 1–20 (2003)

    Article  Google Scholar 

  39. Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Trans. Image Process. 12(11), 1427–1442 (2003)

    Article  Google Scholar 

  40. Mazaheri, Y., Bokacheva, L., Kroon, D.J., Akin, O., Hricak, H., Chamudot, D., Fine, S., Koutcher, J.A.: Semi-automatic deformable registration of prostate MR images to pathological slices. J. Mag. Resonance Imaging 32(5), 1149–1157 (2010)

    Article  Google Scholar 

  41. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)

    Article  Google Scholar 

  42. Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song, J.H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parsey, R.V.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786–802 (2009)

    Article  Google Scholar 

  43. Achenbach, J.: Wave propagation in elastic solids. In: North-Holland series in applied mathematics and mechanics, vol. 16. North-Holland, Amsterdam

  44. Davis, J.L.: Mathematics of wave propagation. Princeton University Press, Princeton (2000)

  45. Barber, J.R.: Elasticity, Solid Mechanics and its Applications, vol. 172. Springer, New York (2010)

    Google Scholar 

  46. http://www.bic.mni.mcgill.ca/brainweb/

  47. Kwan, R.K.S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999)

    Article  Google Scholar 

  48. http://www.prostatemrimagedatabase.com/

  49. Tilak, G., Tuncali, K., Song, S.E., Tokuda, J., Olubiyi, O., Fennessy, F., Fedorov, A., Penzkofer, T., Tempany, C., Hata, N.: 3T MR-guided in-bore transperineal prostate biopsy: a comparison of robotic and manual needle-guidance templates. J. Mag. Resonance Imaging (2014) (available online)

  50. Fedorov, A., Tuncali, K., Fennessy, F.M., Tokuda, J., Hata, N., Wells, W.M., Kikinis, R., Tempany, C.M.: Image registration for targeted MRI-guided transperineal prostate biopsy. J. Mag. Resonance Imaging 36(4), 987–992 (2012)

    Article  Google Scholar 

  51. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.V.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  52. Thomson, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics, vol. 22. Springer, New York (1995)

    Google Scholar 

  53. Holden, M., Hill, D.L.G., Denton, E.R.E., Jarosz, J.M., Cox, T.C.X., Rohlfing, T., Goodey, J., Hawkes, D.J.: Voxel similarity measures for 3D serial MR brain image registration. IEEE Trans. Med. Imaging 19, 94–102 (1999)

    Article  Google Scholar 

  54. The national library of medicine insight segmentation and registration toolkit. http://www.itk.org/

  55. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)

    Article  Google Scholar 

  56. Dice, R.L.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  57. Mizuno, S.: Overlap coefficient for assessing the similarity of pharmacokinetic data between ethnically different populations. Clin. Trials 2, 174–181 (2005)

    Article  Google Scholar 

  58. Christensen, G.E.: Deformable shape models for anatomy, Ph.D. dissertation, Sever Institute of Technology, Washington University, St. Louis, USA (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Khan, M.F. Deformable image registration based on elastodynamics. Machine Vision and Applications 26, 689–710 (2015). https://doi.org/10.1007/s00138-015-0690-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0690-1

Keywords

Navigation