Skip to main content

Advertisement

Log in

Monitoring the hepato-splanchnic region in the critically ill patient

Measurement techniques and clinical relevance

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Marshall JC, Christou NV, Meakins JL (1993) The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg 218:111–119

    Article  PubMed  CAS  Google Scholar 

  2. Fink MP (1991) Why the GI tract is pivotal in trauma sepsis, and MOE J Crit Illness 6: 253–276

    Google Scholar 

  3. Dantzker DR (1993) The gastrointestinal tract — the canary of the body? JAMA 270:1247–1248

    Article  PubMed  CAS  Google Scholar 

  4. Nelson DP, Samsel RW, Wood LD, Schumacker PT (1988) Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol 64: 2410–2419

    PubMed  CAS  Google Scholar 

  5. Lundgren O (1989) Physiology of intestinal circulation. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) Splanchnic ischemia and multiple organ failure. Edward Arnold, London, pp 29–47

    Google Scholar 

  6. Edouard AR, Degremont AC, Duranteau J, Pussard E, Berdeaux A, Samii K (1994) Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20: 414–420

    Article  PubMed  CAS  Google Scholar 

  7. Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of post-operative organ dysfunction. Intensive Care Med 20: 203–209

    Article  PubMed  CAS  Google Scholar 

  8. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270: 2699–2707

    Article  PubMed  CAS  Google Scholar 

  9. Hayes MA, Timmins AC, Yau EHS, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically patients. N Engl J Med 330:1717–1722

    Article  PubMed  CAS  Google Scholar 

  10. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

  11. Tuchschmidt J, Fried J, Astiz M, Rackow E (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102: 216–220

    Article  PubMed  CAS  Google Scholar 

  12. Dawson AM (1965) Small bowel tonometry: assessment of small gut mucosal oxygen tension in dog and man. Nature 206: 943–944

    Article  PubMed  CAS  Google Scholar 

  13. Fiddian-Green RG (1995) Gastric intramucosal pH, tissue oxygenation and acid-base balance. Br J Anaesth 74: 591–606

    Article  PubMed  CAS  Google Scholar 

  14. Knichwitz G, Kuhmann M, Brodner G, Mertes N, Goeters C, Brüssel T (1996) Gastric tonometry: precision and reliability are improved by a phosphate buffered solution. Crit Care Med 24: 512–516

    Article  PubMed  CAS  Google Scholar 

  15. Schlichtig R, Mehta N, Gayowski JP, Gayowski TJ (1996) Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J Crit Care 11: 51–56

    Article  PubMed  CAS  Google Scholar 

  16. Benjamin E, Oropello JM (1996) Does gastric tonometry work? No. Crit Care Clin 12: 587–601

    Article  CAS  Google Scholar 

  17. Brown SD, Gutierrez G (1996) Does gastric tonometry work? Yes. Crit Care Clin 12: 569–585

    Article  CAS  Google Scholar 

  18. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451

    PubMed  CAS  Google Scholar 

  19. Vallet B, Curtis SE, Cain SM (1997) Is regional veno-arterial CO2 difference a marker of low flow or tissue dysoxia (abstract)? Intensive Care Med 23: S80

  20. Vallet B, Durinck L, Chagnon JL, Neviere R (1996) Effect of hypoxic hypoxia on veno and gut mucosal arterial PCO2 differences in pig (abstract). Anesthesiology 85: A607

  21. Vandermeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1226

    Article  PubMed  CAS  Google Scholar 

  22. Mythen MG, Webb AR (1994) Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Med 20: 99–104

    Article  PubMed  CAS  Google Scholar 

  23. Arnold J, Hendriks J, Ince C, Bruining H (1994) Tonometry to assess the adequacy of splanchnic oxygenation in the critically ill patient. Intensive Care Med 20: 452–456

    Article  PubMed  CAS  Google Scholar 

  24. Groeneveld AB, Kolkman JJ (1994) Splanchnic tonometry: a review of physiology, methodology, and clinical applications. J Crit Care 9:198–210

    Article  PubMed  CAS  Google Scholar 

  25. Taylor DE, Gutierrez G (1996) Tonometry. A review of clinical studies. Crit Care Clin 12:1007–1018

    Article  PubMed  CAS  Google Scholar 

  26. Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23:1184–1193

    Article  PubMed  CAS  Google Scholar 

  27. Boyd O, Mackay CJ, Lamb G, Bland JM, Grounds RM, Bennett ED (1993) Comparison of clinical information gained from routine blood-gas analysis and from gastric tonometry for intramural pH. Lancet 341:142–146

    Article  PubMed  CAS  Google Scholar 

  28. Russell JA (1997) Gastric tonometry: does it work? Intensive Care Med 23: 3–6

    Article  PubMed  CAS  Google Scholar 

  29. Salzman AL, Wang H, Wollert PS, Vandermeer TJ, Compton CC, Denenberg AG, Fink MP (1994) Endotoxin-induced ileal mucosal hyperperme-ability in pigs: role of tissue acidosis. Am J Physiol 266: G633-G646

    PubMed  CAS  Google Scholar 

  30. Andersen LW, Landow L, Baek L, Jansen E, Baker S (1993) Association between gastric intramucosal pH and splanchnic endotoxin, antibody to endotoxin, and tumor necrosis factor-alpha concentrations in patients undergoing cardiopulmonary bypass. Crit Care Med 21: 210–217

    Article  PubMed  CAS  Google Scholar 

  31. Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TS, Marshall T, Mountford PJ, Bion JF (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 275:1007–1012

    Article  PubMed  CAS  Google Scholar 

  32. Myles P, Buckland M, Cannon G, Bujor M, Anderson J, Salamonsen B, Davis B (1996) The association among gastric mucosal pH, endotoxemia, and low systemic vascular resistance after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 10:195–200

    Article  PubMed  CAS  Google Scholar 

  33. Weite M, Pichler B, Groh J, Anthuber M, Jauch KW, Pratschke E, Lenhart FP, Haller M, Frey L, Peter K (1996) Perioperative mucosal pH and splanchnic endotoxin concentration in orthotopic liver transplantation. Br J Anaesth 76: 90–98

    Google Scholar 

  34. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130: 423–429

    PubMed  CAS  Google Scholar 

  35. Gutierrez G, Clark C, Brown SD, Price K, Ortiz L, Nelson C (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150: 324–329

    PubMed  CAS  Google Scholar 

  36. Maynard ND, Bihari DJ, Dalton RN, Smithies MN, Mason RC (1995) Increasing splanchnic blood flow in the critically ill. Chest 108:1648–1654

    Article  PubMed  CAS  Google Scholar 

  37. Radermacher P, Buhl R, Santak B, Klein M, Kniemeyer HW, Becker H, Tarnow J (1995) The effect of prostacyclin on gastric mucosal pH in patients with septic shock. Intensive Care Med 21: 414–421

    Article  PubMed  CAS  Google Scholar 

  38. Eichelbrönner O, Wiedeck H, Mezödy M, Reinelt H, Georgieff M, Raderma-cher P (1996) Inhaled NO and aerolized PGI2 in septic shock — differential effects on splanchnic oxygenation? Intensive Care Med 22: 880–887

    Article  PubMed  Google Scholar 

  39. Meier-Hellmann A, Bredle DL, Specht M, Spies C, Hannemann L, Reinhart K (1997) The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients with septic shock. Intensive Care Med 23: 31–37

    Article  PubMed  CAS  Google Scholar 

  40. Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyper-dynamic sepsis. JAMA 272:1354–1357

    Article  PubMed  CAS  Google Scholar 

  41. Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, Nabet P, Larcan A (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med 23: 282–287

    Article  PubMed  CAS  Google Scholar 

  42. Meier-Helcmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25: 399–404

    Article  Google Scholar 

  43. Ivatury RR, Simon RJ, Islam S, Fueg A, Rohman M, Stahl WM (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 183:145–154

    PubMed  CAS  Google Scholar 

  44. Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, Dubin A, Schiavi E, Jorge M, Pusajo J et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  45. Takala J, Parviainen I, Siloaho M, Ruokonen E, Hamalainen E (1994) Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH. Crit Care Med 22: 1877–1879

    PubMed  CAS  Google Scholar 

  46. Eichelbrönner O, Feist H, Georgieff M, Radermacher P (1995) Reliability of tonometric intramucosal PCO2 measurement with a phosphate-buffer solution. Intensive Care Med 21: 387–388

    Article  PubMed  Google Scholar 

  47. Kolkman JJ, Zwarekant LJ, Boshui-zen K, Groeneveld ABJ, Steverink PJGM, Meuwissen SG (1997) Type of solution and PCO2 measurement errors during tonometry. Intensive Care Med 23: 658–663

    Article  PubMed  CAS  Google Scholar 

  48. Oud L, Kruse JA (1996) Poor in vivo reproducibility of gastric intramucosal pH determined by saline-filled balloon tonometry. J Crit Care 11:144–150

    Article  PubMed  CAS  Google Scholar 

  49. Fiddian-Green RG, Pittenger G, Whitehouse WM Jr (1982) Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 33: 39–48

    Article  PubMed  CAS  Google Scholar 

  50. Heard SO, Helsmoortel CM, Kent JC, Shahnarian A, Fink MP (1991) Gastric tonometry in healthy volunteers: effect of ranitidine on calculated intramural pH. Crit Care Med 19: 271–274

    PubMed  CAS  Google Scholar 

  51. Kolkman JJ, Groeneveld AB, Meuwissen SG (1994) Effect of ranitidine on basal and bicarbonate enhanced intragastric PCO2: a tonometric study. Gut 35: 737–741

    Article  PubMed  CAS  Google Scholar 

  52. Parviainen I, Vaisanen O, Ruokonen E, Takala J (1996) Effect of nasogastric suction and ranitidine on the calculated gastric intramucosal pH. Intensive Care Med 22: 319–323

    Article  PubMed  CAS  Google Scholar 

  53. Higgins D, Mythen MG, Webb AR (1994) Low intramucosal pH is associated with failure to acidify the gastric lumen in response to pentagastrin. Intensive Care Med 20:105–108

    Article  PubMed  CAS  Google Scholar 

  54. Marik PE, Lorenzana A (1996) Effect of tube feedings on the measurement of gastric intramucosal pH. Crit Care Med 24:1498–1500

    Article  PubMed  CAS  Google Scholar 

  55. Antonsson JB, Boyle CC III, Kruithoff KL, Wang H, Sacristan E, Rothschild HR, Fink MP (1990) Validation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259: G519-G523

    PubMed  CAS  Google Scholar 

  56. Michagin G, Jensen PJ, Klint-Andersen P (1996) The accuracy of gastric tonometry: a matter of mathematical thinking. Intensive Care Med 22:1273

    Article  PubMed  CAS  Google Scholar 

  57. Knichwitz G, Rotker J, Brüssel T, Kuhmann M, Mertes N, Mollhoff T (1996) A new method for continuous intramucosal PCO2 measurement in the gastrointestinal tract. Anesth Analg 83: 6–11

    Article  PubMed  CAS  Google Scholar 

  58. Morgan TJ, Venkatesh B, Endre ZH (1997) Continuous measurement of gut luminal PCO2 in the rat: responses to transient episodes of graded aortic hypotension. Crit Care Med 25: 1575–1578

    Article  PubMed  CAS  Google Scholar 

  59. Temmesfeld-Wollbrück B, Szalay A, Olschewski H, Grimminger F, Seeger W (1997) Advantage of buffered solutions or automated capnometry in air-filled balloons for use in gastric tonometry. Intensive Care Med 23:423–427

    Article  PubMed  Google Scholar 

  60. Heinonen PO, Jousela IT, Blomquist KA, Olkkola KT, Takkunen OS (1997) Validation of air tonometric measurement of gastric regional concentrations of CO2 in critically ill patients. Intensive Care Med 23:524–529

    Article  PubMed  CAS  Google Scholar 

  61. Creteur J, De Backer D, Vincent J-L (1997) Monitoring gastric mucosal carbon dioxide pressure using gas tonometry. In vitro and in vivo validation studies. Anesthesiology 87: 504–510

    Article  PubMed  CAS  Google Scholar 

  62. Guzman JA, Kruse JA (1997) Continuous assessment of gastric intramucosal PCO2 and pH in hemorrhagic shock using capnometric recirculating gas tonometry. Crit Care Med 25:533–537

    Article  PubMed  CAS  Google Scholar 

  63. Findlay GP, Kruger M, Smithies MN (1997) The measurement of gastro-intestinal intramucosal carbon dioxide tension by semi-continuous air tonometry. Clin Intensive Care 8: 267–272

    Article  Google Scholar 

  64. Aranow JS, Fink MP (1996) Determinants of intestinal barrier failure in critical illness. Br J Anaesth 77: 71–81

    PubMed  CAS  Google Scholar 

  65. Fink MP (1997) Interpreting dual-sugar absorbtion studies in critically ill patients: what are the implications of apparent increases in intestinal permeability to hydrophilic solutes? Intensive Care Med 23: 498–502

    Article  Google Scholar 

  66. Bjarnason I, Macpherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108: 1566–1581

    Article  PubMed  CAS  Google Scholar 

  67. Travis S, Menzies I (1992) Intestinal permeability: functional assessment and significance. Clin Sci (Colch) 82: 471–488

    CAS  Google Scholar 

  68. Menzies IS (1974) Absorption of intact oligosaccharide in health and disease. Biochem Soc Trans 2:1040–1046

    Google Scholar 

  69. Deitch EA (1990) Intestinal permeability is increased in burn patients shortly after injury. Surgery 107: 411–416

    PubMed  CAS  Google Scholar 

  70. Pape HC, Dwenger A, Regel G, Auf’m’Kolck M, Gollub F, Wisner D, Sturm JA, Tscherne H (1994) Increased gut permeability after multiple trauma. Br J Surg 81: 850–852

    Article  PubMed  CAS  Google Scholar 

  71. Langkamp-Henken B, Donovan TB, Pate LM, Maull CD, Kudsk KA (1995) Increased intestinal permeability following blunt and penetrating trauma. Crit Care Med 23: 660–664

    Article  PubMed  CAS  Google Scholar 

  72. Harris CE, Griffiths RD, Freestone N, Billington D, Atherton ST, Macmillan RR (1992) Intestinal permeability in the critically ill. Intensive Care Med 18: 38–41

    Article  PubMed  CAS  Google Scholar 

  73. Johnston JD, Harvey CJ, Menzies IS, Treacher DF (1996) Gastrointestinal permeability and absorptive capacity in sepsis. Crit Care Med 24:1144–1149

    Article  PubMed  CAS  Google Scholar 

  74. Ohri SK, Bjarnason I, Pathi V, Somasundaram S, Bowles CT, Keogh BE, Khaghani A, Menzies I, Yacoub MH, Taylor KM (1993) Cardiopulmonary bypass impairs small intestinal transport and increases gut permeability. Ann Thorac Surg 55:1080–1086

    PubMed  CAS  Google Scholar 

  75. Ohri SK, Somasundaram S, Koak Y, Macpherson A, Keogh BE, Taylor KM, Menzies IS, Bjarnason I (1994) The effect of intestinal hypoperfusion on intestinal absorption and permeability during cardiopulmonary bypass. Gastroenterology 106: 318–323

    PubMed  CAS  Google Scholar 

  76. Sinclair DG, Haslam PL, Quinlan GJ, Pepper JR, Evans TW (1995) The effect of cardiopulmonary bypass on intestinal and pulmonary endothelial permeability. Chest 108: 718–724

    Article  PubMed  CAS  Google Scholar 

  77. Oudemans van Straaten HM, Jansen PG, Hoek FJ, van Deventer SJ, Sturk A, Stoutenbeek CP, Tytgat GN, Wildevuur CR, Eysman L (1996) Intestinal permeability, circulating endotoxin, and postoperative systemic responses in cardiac surgery patients. J Cardiothorac Vase Anesth 10:187–194

    Article  CAS  Google Scholar 

  78. Illig KA, Ryan CK, Hardy DJ, Rhodes J, Locke W, Sax HC (1992) Total parenteral nutrition-induced changes in gut mucosal function: atrophy alone is not the issue. Surgery 112: 631–637

    PubMed  CAS  Google Scholar 

  79. Schlichting E, Grotmol T, Kahler H, Naess O, Steinbakk M, Lyberg T (1995) Alterations in mucosal morphology and permeability, but no bacterial or endotoxin translocation takes place after intestinal ischemia and early reperfusion in pigs. Shock 3:116–124

    PubMed  CAS  Google Scholar 

  80. Roumen RM, van der Vliet JA, Wevers RA, Goris RJ (1993) Intestinal permeability is increased after major vascular surgery. J Vase Surg 17: 734–737

    Article  CAS  Google Scholar 

  81. Hadfield RJ, Sinclair DG, Houldsworth PE, Evans TW (1995) Effects of enteral and parenteral nutrition on gut mucosal permeability in the critically ill. Am J Respir Crit Care Med 152:1545–1548

    PubMed  CAS  Google Scholar 

  82. Sinclair DG, Houldsworth PE, Keogh B, Pepper J, Evans TW (1997) Gastrointestinal permeability following cardiopulmonary bypass: a randomised study comparing the effects of dopamine and dopexamine. Intensive Care Med 23: 510–516

    Article  PubMed  CAS  Google Scholar 

  83. Okazaki K, Miyazaki M, Onishi S, Ito K (1986) Effects of food intake and various extrinsic hormones on portal blood flow in patients with liver cirrhosis demonstrated by pulsed Doppler with the Octoson. Scand J Gastroenterol 21:1029–1038

    Article  PubMed  CAS  Google Scholar 

  84. Payen DM, Fratacci MD, Dupuy P, Gatecel C, Vigouroux C, Ozier Y, Houssin D, Chapuis Y (1990) Portal and hepatic arterial blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery 107: 417–427

    PubMed  CAS  Google Scholar 

  85. Burggraaf J, Schoemaker HC, Cohen AF (1996) Assessment of changes in liver blood flow after food intake — comparison of ICG clearance and echo-Doppler. Br J Clin Pharmacol 42:499–502

    Article  PubMed  CAS  Google Scholar 

  86. Shepherd AP, Riedel GL (1982) Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry. Am J Physiol 242: G668-G672

    PubMed  CAS  Google Scholar 

  87. Frank KH, Kessler M, Appelbaum K, Dümmler W (1989) The Erlangen microlightguide spectrophotometer EM-PHO 1. Phys Med Biol 34:1883–1900

    Article  PubMed  CAS  Google Scholar 

  88. Kuchenreuther S, Adler J, Schütz W, Eichelbrönner O, Georgieff M (1996) The Erlanger Microlightguide Photometer: a new concept for monitoring intracapillary oxygen supply of tissue — first results and a review of the physiological basis. J Clin Monit 12: 211–224

    Article  PubMed  CAS  Google Scholar 

  89. Bradley SE, Ingelfinger FJ, Bradley GP, Curry JJ (1945) The estimation of hepatic blood flow in man. J Clin Invest 24:890–897

    Article  PubMed  CAS  Google Scholar 

  90. Leevy CM, Mendenhall CL, Lesko W, Howard MM (1962) Estimation of hepatic blood flow with indocyanine green. J Clin Invest 41:1169–1179

    Article  PubMed  CAS  Google Scholar 

  91. Roe PG (1993) Liver function test in the critically ill. Clin Intensive Care 4: 174–182

    PubMed  CAS  Google Scholar 

  92. Wilmore DW, Goodwin CW, Aulick LH, Powanda MC, Mason AD Jr, Pruitt BA Jr (1980) Effect of injury and infection on visceral metabolism and circulation. Ann Surg 192: 491–504

    Article  PubMed  CAS  Google Scholar 

  93. Stjernstrom H, Jorfeldt L, Wiklund L (1981) Influence of abdominal surgical trauma on substrate utilization by the human brain. Acta Anaesthesiol Scand 25: 222–227

    Article  PubMed  CAS  Google Scholar 

  94. Lund J, Stjernstrom H, Jorfeldt L, Wiklund L (1986) Effect of extradural analgesia on glucose metabolism and gluconeogenesis. Studies in association with upper abdominal surgery. Br J Anaesth 58: 851–857

    Article  PubMed  CAS  Google Scholar 

  95. Hakanson E, Rutberg H, Jorfeldt L (1986) Effect of adrenaline on exchange of free fatty acids in leg tissues and splanchnic area. A comparison with the metabolic response to surgical stress. Clin Physiol 6: 453–463

    Article  PubMed  CAS  Google Scholar 

  96. Hakanson E, Rutberg H, Jorfeldt L (1986) Effect of adrenaline on exchange of glucose in leg tissues and splanchnic area. A comparison with the metabolic response to surgical stress. Clin Physiol 6: 439–451

    Article  PubMed  CAS  Google Scholar 

  97. Fong YM, Marano MA, Moldawer LL, Wei H, Calvano SE, Kenney JS, Allison AC, Cerami A, Shires GT, Lowry SF (1990) The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85:1896–1904

    Article  PubMed  CAS  Google Scholar 

  98. Steffes CP, Dahn MS, Lange MP (1994) Oxygen transport-dependent splanchnic metabolism in the sepsis syndrome. Arch Surg 129: 46–52

    PubMed  CAS  Google Scholar 

  99. Dahn MS, Mitchell RA, Lange MP, Smith S, Jacobs LA (1995) Hepatic metabolic response to injury and sepsis. Surgery 117: 520–530

    Article  PubMed  CAS  Google Scholar 

  100. Gatecel C, Mebazaa A, Kong R, Guinard N, Kermarrec N, Mateo J, Payen D (1995) Inhaled nitric oxide improves hepatic tissue oxygenation in right ventricular failure: value of hepatic venous oxygen saturation monitoring. Anesthesiology 82: 588–590

    Article  PubMed  CAS  Google Scholar 

  101. Zublke CE, Anthuber M, Pratschke E, Merkle R, Briegel J (1992) Color flow Doppler imaging during epoprostenol (PGI2) therapy of primary nonfunction following liver transplantation. Transplant Proc 24:1985–1986

    PubMed  CAS  Google Scholar 

  102. Zülke C, Anthuber M, Kramling HJ, Berger H, Jauch KW, Schildberg FW (1997) Primary shunt perfusion detected by colour flow Doppler imaging and its impact on liver allograft survival. Clin Transplant 11:163–168

    PubMed  Google Scholar 

  103. Kvernebo K, Lunde OC, Stranden E, Larsen S (1986) Human gastric blood circulation evaluated by endoscopic laser Doppler flowmetry. Scand J Gastroenterol 21: 685–692

    Article  PubMed  CAS  Google Scholar 

  104. Lunde OC, Kvernebo K, Larsen S (1988) Evaluation of endoscopic laser Doppler flowmetry for measurement of human gastric blood flow. Methodologie aspects. Scand J Gastroenterol 23:1072–1078

    Article  PubMed  CAS  Google Scholar 

  105. Ahn H, Ivarsson LE, Johansson K, Lindhagen J, Lundgren O (1988) Assessment of gastric blood flow with laser Doppler flowmetry. Scand J Gastroenterol 23:1203–1210

    Article  PubMed  CAS  Google Scholar 

  106. Ahn H, Lindhagen J, Nilsson GE, Oberg PA, Lundgren O (1986) Assessment of blood flow in the small intestine with laser Doppler flowmetry. Scand J Gastroenterol 21: 863–870

    Article  PubMed  CAS  Google Scholar 

  107. Lunde OC, Kvernebo K (1988) Gastric blood flow in patients with gastric ulcer measured by endoscopic laser Doppler flowmetry. Scand J Gastroenterol 23: 546–550

    Article  PubMed  CAS  Google Scholar 

  108. Neviere R, Mathieu D, Chagnon JL, Lebleu N, Wattel F (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154:1684–1688

    PubMed  CAS  Google Scholar 

  109. Duranteau J, Sitbon P, Vicaut E, Descorps-Declère A, Vigue B, Samii K (1996) Assessment of gastric mucosal perfusion during simulated hypovolemia in healthy volunteers. Am J Respir Crit Care Med 154:1653–1657

    PubMed  CAS  Google Scholar 

  110. Johansson K, Jakobsson A, Lindahl K, Lindhagen J, Lundgren O, Nilsson GE (1991) Influence of fibre diameter and probe geometry on the measuring depth of laser Doppler flowmetry in the gastrointestinal application. Int J Microcirc Clin Exp 10: 219–229

    PubMed  CAS  Google Scholar 

  111. Harrison DK, Birkenhake S, Hagen N, Knauf S, Kessler M (1989) Regulation of capillary blood flow: a new concept. Adv Exp Med Biol 248: 583–589

    PubMed  CAS  Google Scholar 

  112. Sato N, Hayashi N, Kawano S, Kamada T, Abe H (1983) Hepatic hemodynamics in patients with chronic hepatitis or cirrhosis as assessed by organ-reflectance spectrophotometry. Gastroenterology 84:611–616

    PubMed  CAS  Google Scholar 

  113. Temmesfeld-Wollbrück B (1995) Spectrophotometric assessment of gastric mucosal perfusion. Clin Intensive Care 6 [Suppl]: 37–38

    Google Scholar 

  114. Temmesfeld-Wollbrück B, Szalay A, Mayer K, Olschewski H, Seeger W, Grimminger F (1998) Reflectans spectrophotometry demonstrates severe abnormalties of gastric mucosal oxygenation in septic patients — partial responsiveness to dopexamine. Am J Respir Crit Care Med [in press]

  115. Caesar J, Shaldon S, Chiandussi L, Guevara L, Sherlock S (1961) The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sei 21: 43–57

    CAS  Google Scholar 

  116. Uusaro A, Ruokonen E, Takala J (1995) Estimation of splanchnic blood flow by the fick principle in man and problems in the use of indocyanine green. Cardiovasc Res 30:106–112

    PubMed  CAS  Google Scholar 

  117. Clements D, West R, Elias E (1987) Comparison of bolus and infusion methods for estimating hepatic blood flow in patients with liver disease using indocyanine green. J Hepatol 5: 282–287

    Article  PubMed  CAS  Google Scholar 

  118. Reinelt H, Radermacher P, Fischer G, Geisser W, Wächter U, Wiedeck H, Georgieff M, Vogt J (1997) Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology 86: 818–824

    Article  PubMed  CAS  Google Scholar 

  119. Wiegand BD, Ketterer SG, Rapaport E (1960) The use of indocyanine green for the evaluation of hepatic function and blood flow in man. Am J Digest Dis 427: 427–436

    Article  Google Scholar 

  120. Gottlieb ME, Sarfeh IJ, Stratton H, Goldman ML, Newell JC, Shah DM (1983) Hepatic perfusion and splanchnic oxygen consumption in patients postinjury. J Trauma 23: 836–843

    Article  PubMed  CAS  Google Scholar 

  121. Angehrn W, Schmid E, Althaus F, Niedermann K, Rothlin M (1980) Effect of dopamine on hepatosplanchnic blood flow. J Cardiovasc Pharmacol 2: 257–265

    Article  PubMed  CAS  Google Scholar 

  122. Dahn MS, Lange P, Lobdell K, Hans B, Jacobs LA, Mitchell RA (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101: 69–80

    PubMed  CAS  Google Scholar 

  123. Dahn MS, Lange MP, Wilson RF, Jacobs LA, Mitchell RA (1990) Hepatic blood flow and splanchnic oxygen consumption measurements in clinical sepsis. Surgery 107: 295–301

    PubMed  CAS  Google Scholar 

  124. Meier-Hellmann A, Specht M, Hannemann L, Hassel H, Bredle DL, Reinhart K (1996) Splanchnic blood flow is greater in septic shock treated with norepinephrine than in severe sepsis. Intensive Care Med 22:1354–1359

    Article  PubMed  CAS  Google Scholar 

  125. Fink MP (1996) Does tissue acidosis in sepsis indicate tissue hypoperfusion? Intensive Care Med 22:1144–1146

    Article  PubMed  CAS  Google Scholar 

  126. Ruokonen E, Uusaro A, Alhava E, Takala J (1997) The effect of dobutamine infusion on splanchnic blood flow and oxygen transport in patients with acute pancreatitis. Intensive Care Med 23: 732–737

    Article  PubMed  CAS  Google Scholar 

  127. Vogt J, Reinelt H, Radermacher P (1997) Dobutamine and the oxygen uptake/supply relationship in sepsis: from global to regional — nothing is simple and easy. Intensive Care Med 23:715–717

    Article  PubMed  CAS  Google Scholar 

  128. Kainuma M, Fujiwara Y, Kimura N, Shitaokoshi A, Nakashima K, Shimada Y (1991) Monitoring hepatic venous hemoglobin oxygen saturation in patients undergoing liver surgery. Anesthesiology 74: 49–52

    Article  PubMed  CAS  Google Scholar 

  129. Kainuma M, Nakashima K, Sakuma I, Kawase M, Komatsu T, Shimada Y, Nimura Y, Nonami T (1992) Hepatic venous hemoglobin oxygen saturation predicts liver dysfunction after hepatectomy. Anesthesiology 76: 379–386

    Article  PubMed  CAS  Google Scholar 

  130. Meier-Hellmann A, Hannemann L, Specht M, Spies C, Reinhart K (1993) Lebervenose und gemischtvenose O2-Sättigung. Unter Katecholamintherapie bei Patienten im septischen Schock. Anaesthesist 42: 29–33

    PubMed  CAS  Google Scholar 

  131. Meier-Helcmann A, Hannemann L, Specht M, Schaffartzik W, Spies C, Reinhart K (1994) The relationship between mixed venous and hepatic venous O2 saturation in patients with septic shock. Adv Exp Med Biol 345: 701–707

    Google Scholar 

  132. Ruokonen E, Takala J, Kari A, Alhava E (1991) Septic shock and multiple organ failure. Crit Care Med 19: 1146–1151

    PubMed  CAS  Google Scholar 

  133. Dahn MS, Lange MP, Jacobs LA (1988) Central mixed and splanchnic venous oxygen saturation monitoring. Intensive Care Med 14: 373–378

    Article  PubMed  CAS  Google Scholar 

  134. Reinelt H, Kiefer P, Fischer G, Vogt J, Weiss M, Wächter U, Georgieff M, Radermacher PF(1997) ß-reeeptor stimulation determines splanchnic perfusion in septic shock (abstract). Intensive Care Med 23: S80

  135. Lampert R, Rudlof B, Weih EH, Koepp A, Brandt L (1996) Anlage eines Fiberoptik-Katheters in eine Lebervene bei Patienten mit Multiorgandysfunktions-Syndrom (MODS) ohne Einsatz bildgebender Diagnostikverfahren. Anaesthesist 45: 526–532

    Article  PubMed  CAS  Google Scholar 

  136. Reinelt H, Vogt J, Kiefer P, Fischer G, Weiss M, Wächter U, Georgieff M, Radermacher P (1997) O2-supply determines liver metabolism in septic shock (abstract). Intensive Care Med 23: S81

  137. Träger K, Radermacher P, Georgieff M (1996) PEEP and hepatic metabolic performance in septic shock. Intensive Care Med 22:1274–1275

    Article  PubMed  Google Scholar 

  138. Reinelt H, Radermacher P, Fischer G, Geisser W, Trunk E, Wiedeck H, Mezödy M, Georgieff M, Vogt J (1997) Dobutamine and dopexamine and the splanchnic metabolic response in septic shock. Clin Intensive Care 8: 38–41

    Article  Google Scholar 

  139. Ruokonen E, Takala J, Kari A, Saxen H, Mertsola J, Hansen EJ (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1296–1303

    PubMed  CAS  Google Scholar 

  140. Ruokonen E, Takala J, Kari A (1993) Regional blood flow and oxygen transport in patients with the low cardiac output syndrome after cardiac surgery. Crit Care Med 21:1304–1311

    Article  PubMed  CAS  Google Scholar 

  141. Uusaro A, Ruokonen E, Takala J (1995) Gastric mucosal pH does not reflect changes in splanchnic blood flow after cardiac surgery. Br J Anaesth 74:149–154

    Article  PubMed  CAS  Google Scholar 

  142. Parviainen I, Ruokonen E, Takala J (1995) Dobutamine-induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardiac surgery. Br J Anaesth 74: 277–282

    Article  PubMed  CAS  Google Scholar 

  143. Parviainen I, Ruokonen E, Takala J (1996) Sodium nitroprusside after cardiac surgery: systemic and splanchnic blood flow and oxygen transport. Acta Anaesthesiol Scand 40: 606–611

    Article  PubMed  CAS  Google Scholar 

  144. Gumucio JJ (1989) Hepatocyte heterogeneity: the coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology 9:154–160

    Article  PubMed  CAS  Google Scholar 

  145. Oellerich M, Raude E, Burdelski M, Schulz M, Schmidt FW, Ringe B, Lamesch P, Pichlmayr R, Raith H, Scheruhn M et al (1987) Monoethylglycinexylidide formation kinetics: a novel approach to assessment of liver function. J Clin Chem Clin Biochem 25: 845–853

    PubMed  CAS  Google Scholar 

  146. Autschbach R, Falk V, Lange H, Oellerich M, Walther T, Mohr FW, Dalichau H (1996) Assessment of metabolic liver function and hepatic blood flow during cardiopulmonary bypass. Thorac Cardiovasc Surg 44: 76–80

    Article  PubMed  CAS  Google Scholar 

  147. Reichel C, Nacke A, Sudhop T, Wienkoop G, Luers C, Hahn C, Pohl C, Spengler U, Sauerbruch T (1997) The low-dose monoethylglycinexylidide test: assessment of liver function with fewer side effects. Hepatology 25: 1323–1327

    Article  PubMed  CAS  Google Scholar 

  148. Lehmann U, Armstrong VW, Schutz E, Regel G, Pape D, Oellerich M (1995) Monoethylglycinexylidide as an early predictor of posttraumatic multiple organ failure. Ther Drug Monit 17:125–132

    Article  PubMed  CAS  Google Scholar 

  149. Esen F, Erdem T, Cakar N, Quintel M, Telci L, Akpir K, van Ackern K (1997) Monoethylglycinexylidide (MEGX) as an early predictor of liver dysfunction in severe sepsis. Clin Intensive Care 8: 260–266

    Article  Google Scholar 

  150. Maynard ND, Bihari DJ, Dalton RN, Beale R, Smithies MN, Mason RC (1997) Liver function and splanchnic ischemia in critically ill patients. Chest 111:180–187

    Article  PubMed  CAS  Google Scholar 

  151. Reinelt H, Fischer G, Wiedeck H, Steinbach G, Georgieff M, Radermacher P (1996) Low MEGX concentrations do not predict reduced splanchnic blood flow in septic shock (abstract). Intensive Care Med 22: S312

  152. Brinkmann A, Radermacher P, Vogt N, Wolf CF (1998) “pHi-Tonometrie” des Magens — Sinnvolle Ergänzung des heutigen perioperativen und intensivmedizinischen Methodenrepertoire? Akt Ernähr Med 23: 72–77

    Google Scholar 

  153. Sinclair DG, Evans TW (1996) Increased gastrointestinal permeability. In: Rombeau JL, Takala J (eds) Gut dysfunction in critical illness (Update in intensive care and emergency medicine 26). Springer, Berlin Heidelberg New York, pp 202–216

    Google Scholar 

  154. Adler J, Iber T, Rieger KM, Träger K, Georgieff M, Radermacher P, Šantak B (1997) Is acidosis caused by impaired O2 supply in hyperdynamic endotoxin shock in pigs (abstract)? Intensive Care Med 23: S92

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmann, A., Calzia, E., Träger, K. et al. Monitoring the hepato-splanchnic region in the critically ill patient. Intensive Care Med 24, 542–556 (1998). https://doi.org/10.1007/s001340050614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001340050614

Keywords

Navigation