Skip to main content

Advertisement

Log in

Association between hyperkalemia at critical care initiation and mortality

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To investigate the association between potassium concentration at the initiation of critical care and all-cause mortality.

Methods

We performed a retrospective observational study on 39,705 patients, age ≥18 years, who received critical care between 1997 and 2007 in two tertiary care hospitals in Boston, Massachusetts. The exposure of interest was the highest potassium concentration on the day of critical care initiation and categorized a priori as 4.0–4.5, 4.5–5.0, 5.0–5.5, 5.5–6.0, 6.0–6.5, or ≥6.5 mEq/l. Logistic regression examined death by days 30, 90, and 365 post-critical care initiation, and in-hospital mortality. Adjusted odds ratios were estimated by multivariable logistic regression models.

Results

The potassium concentration was a strong predictor of all-cause mortality 30 days following critical care initiation with a significant risk gradient across potassium groups following multivariable adjustment: K = 4.5–5.0 mEq/l OR 1.25 (95 % CI, 1.16–1.35; P < 0.0001); K = 5.0–5.5 mEq/l OR 1.42 (95 % CI, 1.29–1.56; P < 0.0001); K = 5.5–6.0 mEq/l OR 1.67 (95 % CI, 1.47–1.89; P < 0.0001); K = 6.0–6.5 mEq/l OR 1.63 (95 % CI, 1.36–1.95; P < 0.0001); K > 6.5 mEq/l OR 1.72 (95 % CI, 1.49–1.99; P < 0.0001); all relative to patients with K = 4.0–4.5 mEq/l. Similar significant associations post multivariable adjustments are seen with in-hospital mortality and death by days 90 and 365 post-critical care initiation. In patients whose hyperkalemia decreases ≥1 mEq/l in 48 h post-critical care initiation, the association between high potassium levels and mortality is no longer significant.

Conclusions

Our study demonstrates that a patient's potassium level at critical care initiation is robustly associated with the risk of death even at moderate increases above normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gennari F (1997) Disorders of potassium metabolism. In: Suki W, Massry S (eds) Therapy of renal diseases. Kluwer, Boston, pp 53–84

    Google Scholar 

  2. Gennari FJ (2002) Disorders of potassium homeostasis. Hypokalemia and hyperkalemia. Crit Care Clin 18:273–288vi

    Google Scholar 

  3. Acker CG, Johnson JP, Palevsky PM, Greenberg A (1998) Hyperkalemia in hospitalized patients: causes, adequacy of treatment, and results of an attempt to improve physician compliance with published therapy guidelines. Arch Intern Med 158:917–924

    Article  PubMed  CAS  Google Scholar 

  4. Moore ML, Bailey RR (1989) Hyperkalaemia in patients in hospital. N Z Med J 102:557–558

    PubMed  CAS  Google Scholar 

  5. Borra S, Shaker R, Kleinfeld M (1988) Hyperkalemia in an adult hospitalized population. Mt Sinai J Med 55:226–229

    PubMed  CAS  Google Scholar 

  6. Shemer J, Modan M, Ezra D, Cabili S (1983) Incidence of hyperkalemia in hospitalized patients. Isr J Med Sci 19:659–661

    PubMed  CAS  Google Scholar 

  7. Paice B, Gray JM, McBride D, Donnelly T, Lawson DH (1983) Hyperkalaemia in patients in hospital. Br Med J (Clin Res Ed) 286:1189–1192

    Article  CAS  Google Scholar 

  8. Shapiro S, Slone D, Lewis GP, Jick H (1971) Fatal drug reactions among medical inpatients. JAMA 216:467–472

    Article  PubMed  CAS  Google Scholar 

  9. Topf J, Asplin J (2006) Disorders of potassium homeostasis. In: Murray P, Brady H, Hall J (eds) Intensive care in nephrology. Taylor & Francis, London, pp 363–382

    Google Scholar 

  10. Murphy SN, Chueh HC (2002) A security architecture for query tools used to access large biomedical databases. In: Proceedings of AMIA symposium, pp 552–556

  11. Zager S, Mendu ML, Chang D, Bazick HS, Braun AB, Gibbons FK, Christopher KB (2011) Neighborhood poverty rate and mortality in patients receiving critical care in the academic medical center setting. Chest 139:1368–1379

    Article  PubMed  Google Scholar 

  12. Braun A, Chang D, Mahadevappa K, Gibbons FK, Liu Y, Giovannucci E, Christopher KB (2011) Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill. Crit Care Med 39:671–677

    Article  PubMed  CAS  Google Scholar 

  13. Hivert MF, Grant RW, Shrader P, Meigs JB (2009) Identifying primary care patients at risk for future diabetes and cardiovascular disease using electronic health records. BMC Health Serv Res 9:170

    Article  PubMed  Google Scholar 

  14. Hug BL, Lipsitz SR, Seger DL, Karson AS, Wright SC, Bates DW (2009) Mortality and drug exposure in a 5-year cohort of patients with chronic liver disease. Swiss Med Wkly 139:737–746

    PubMed  CAS  Google Scholar 

  15. Linder JA, Bates DW, Williams DH, Connolly MA, Middleton B (2006) Acute infections in primary care: accuracy of electronic diagnoses and electronic antibiotic prescribing. J Am Med Inform Assoc 13:61–66

    Article  PubMed  Google Scholar 

  16. Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB (2012) Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit Care Med 40:63–72

    Article  PubMed  CAS  Google Scholar 

  17. Bellevue R, Dosik H, Spergel G, Gussoff BD (1975) Pseudohyperkalemia and extreme leukocytosis. J Lab Clin Med 85:660–664

    PubMed  CAS  Google Scholar 

  18. Howard MR, Ashwell S, Bond LR, Holbrook I (2000) Artefactual serum hyperkalaemia and hypercalcaemia in essential thrombocythaemia. J Clin Pathol 53:105–109

    Article  PubMed  CAS  Google Scholar 

  19. Einhorn LM, Zhan M, Hsu VD, Walker LD, Moen MF, Seliger SL, Weir MR, Fink JC (2009) The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med 169:1156–1162

    Article  PubMed  Google Scholar 

  20. Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  21. Rapoport J, Gehlbach S, Lemeshow S, Teres D (1992) Resource utilization among intensive care patients. Managed care vs traditional insurance. Arch Intern Med 152:2207–2212

    Article  PubMed  CAS  Google Scholar 

  22. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43:1130–1139

    Article  PubMed  Google Scholar 

  23. Trespalacios FC, Taylor AJ, Agodoa LY, Abbott KC (2002) Incident acute coronary syndromes in chronic dialysis patients in the United States. Kidney Int 62:1799–1805

    Article  PubMed  Google Scholar 

  24. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  25. Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, Gibson M, Umberger R (2007) Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 131:954–963

    Article  PubMed  CAS  Google Scholar 

  26. Waikar SS, Wald R, Chertow GM, Curhan GC, Winkelmayer WC, Liangos O, Sosa MA, Jaber BL (2006) Validity of international classification of diseases, ninth revision, clinical modification codes for acute renal failure. J Am Soc Nephrol 17:1688–1694

    Article  PubMed  Google Scholar 

  27. Beier K, Eppanapally S, Bazick HS, Chang D, Mahadevappa K, Gibbons FK, Christopher KB (2011) Elevation of blood urea nitrogen is predictive of long-term mortality in critically ill patients independent of “normal” creatinine. Crit Care Med 39:305–313

    Article  PubMed  CAS  Google Scholar 

  28. Logic JR (1973) Enhancement of the vulnerability of the ventricle to fibrillation (VF) by regional hyperkalaemia. Cardiovasc Res 7:501–507

    Article  PubMed  CAS  Google Scholar 

  29. Wingo C, Weiner I (2000) Disorders of potassium balance. In: Brenner B (ed) The kidney. WB Saunders Co., Philadelphia, pp 998–1035

    Google Scholar 

  30. Surawicz B (1967) Relationship between electrocardiogram and electrolytes. Am Heart J 73:814–834

    Article  PubMed  CAS  Google Scholar 

  31. Fisch C (1973) Relation of electrolyte disturbances to cardiac arrhythmias. Circulation 47:408–419

    Article  PubMed  CAS  Google Scholar 

  32. Hultgren HN, Swenson R, Wettach G (1975) Cardiac arrest due to oral potassium administration. Am J Med 58:139–142

    Article  PubMed  CAS  Google Scholar 

  33. Chen G, Khan N, Walker R, Quan H (2010) Validating ICD coding algorithms for diabetes mellitus from administrative data. Diabetes Res Clin Pract 89:189–195

    Article  PubMed  Google Scholar 

  34. Zgibor JC, Orchard TJ, Saul M, Piatt G, Ruppert K, Stewart A, Siminerio LM (2007) Developing and validating a diabetes database in a large health system. Diabetes Res Clin Pract 75:313–319

    Article  PubMed  Google Scholar 

  35. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    Article  PubMed  CAS  Google Scholar 

  36. Quach S, Hennessy DA, Faris P, Fong A, Quan H, Doig C (2009) A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC Health Serv Res 9:129

    Article  PubMed  Google Scholar 

  37. Meehl P (1967) Theory testing in psychology and physics: a methodological paradox. Philos Sci 16:103–115

    Article  Google Scholar 

  38. Sawyer A (1982) Statistical power and effect size in consumer research. In: Mitchell A (ed) Advances in consumer research. Association for Consumer Research, Ann Arbor, pp 1–7

    Google Scholar 

Download references

Acknowledgments

This manuscript is dedicated to the memory of our dear friend and colleague, Nathan Edward Hellman, MD, PhD. We express deep appreciation to Steven M. Brunelli, MD, MSCE, for statistical expertise and analysis. Financial Support: Dr. Christopher was supported by NIH K08AI060881 and the Department of Medicine at the Brigham and Women’s Hospital.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Christopher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, G.M., Mendu, M.L., Gibbons, F.K. et al. Association between hyperkalemia at critical care initiation and mortality. Intensive Care Med 38, 1834–1842 (2012). https://doi.org/10.1007/s00134-012-2636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-012-2636-7

Keywords

Navigation