Skip to main content

Advertisement

Log in

Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock?

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Response to fluid challenge is often defined as an increase in cardiac index (CI) of more than 10–15%. However, in clinical practice CI values are often not available. We evaluated whether changes in mean arterial pressure (MAP) correlate with changes in CI after fluid challenge in patients with septic shock.

Methods

This was an observational study in which we reviewed prospectively collected data from 51 septic shock patients in whom complete hemodynamic measurements had been obtained before and after a fluid challenge with 1,000 ml crystalloid (Hartman’s solution) or 500 ml colloid (hydroxyethyl starch 6%). CI was measured using thermodilution. Patients were divided into two groups (responders and non-responders) according to their change in CI (responders: %CI >10%) after the fluid challenge. Statistical analysis was performed using a two-way analysis of variance test followed by a Student’s t test with adjustment for multiple comparisons. Pearson’s correlation and receiver operating characteristic curve analysis were also used.

Results

Mean patient age was 67 ± 17 years and mean Sequential Organ Failure Assessment (SOFA) upon admittance to the intensive care unit was 10 ± 3. In the 25 responders, MAP increased from 69 ± 9 to 77 ± 9 mmHg, pulse pressure (PP) increased from 59 ± 15 to 67 ± 16, and CI increased from 2.8 ± 0.8 to 3.4 ± 0.9 L/min/m2 (all p < 0.001). There were no significant correlations between the changes in MAP, PP, and CI.

Conclusions

Changes in MAP do not reliably track changes in CI after fluid challenge in patients with septic shock and, consequently, should be interpreted carefully when evaluating the response to fluid challenge in such patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337

    Article  PubMed  Google Scholar 

  2. Weil MH, Henning RJ (1979) New concepts in the diagnosis and fluid treatment of circulatory shock. Thirteenth annual Becton, Dickinson and Company Oscar Schwidetsky Memorial Lecture. Anesth Analg 58:124–132

    Article  PubMed  CAS  Google Scholar 

  3. Vincent JL, Gerlach H (2004) Fluid resuscitation in severe sepsis and septic shock: an evidence-based review. Crit Care Med 32:S451–S454

    Article  PubMed  Google Scholar 

  4. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:17–60

    Article  PubMed  Google Scholar 

  5. Monnet X, Teboul JL (2007) Volume responsiveness. Curr Opin Crit Care 13:549–553

    Article  PubMed  Google Scholar 

  6. Horst HM, Obeid FN (1986) Hemodynamic response to fluid challenge: a means of assessing volume status in the critically ill. Henry Ford Hosp Med J 34:90–94

    PubMed  CAS  Google Scholar 

  7. Coudray A, Romand JA, Treggiari M, Bendjelid K (2005) Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med 33:2757–2762

    Article  PubMed  Google Scholar 

  8. Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J (2008) The pulmonary artery catheter: in medio virtus. Crit Care Med 36:3093–3096

    Article  PubMed  Google Scholar 

  9. Marik PE, Varon J (1998) The hemodynamic derangements in sepsis: implications for treatment strategies. Chest 114:854–860

    Article  PubMed  CAS  Google Scholar 

  10. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International sepsis definitions conference. Intensive Care Med 29:530–538

    PubMed  Google Scholar 

  11. Prasso JE, Berberian G, Cabreriza SE, Quinn TA, Curtis LJ, Rabkin DG, Weinberg AD, Spotnitz HM (2005) Validation of mean arterial pressure as an indicator of acute changes in cardiac output. ASAIO J 51:22–25

    Article  PubMed  Google Scholar 

  12. Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, Richard C, Teboul JL (2011) Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine. Crit Care Med 39(6):1394–1399

    Article  PubMed  Google Scholar 

  13. Hadian M, Kim HK, Severyn DA, Pinsky MR (2010) Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care 14:R212

    Article  PubMed  Google Scholar 

  14. Monnet X, Chemla D, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2007) Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Crit Care Med 35:477–482

    Article  PubMed  Google Scholar 

  15. Sayk F, Vietheer A, Schaaf B, Wellhoener P, Weitz G, Lehnert H, Dodt C (2008) Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Regul Integr Comp Physiol 295:R891–R898

    Article  PubMed  CAS  Google Scholar 

  16. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL (2008) Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med 36:434–440

    Article  PubMed  Google Scholar 

  17. Bendjelid K (2009) When to recalibrate the PiCCO? From a physiological point of view, the answer is simple. Acta Anaesthesiol Scand 53:689–690

    Article  PubMed  CAS  Google Scholar 

  18. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521

    PubMed  CAS  Google Scholar 

  19. Monge Garcia MI, Gil CA, Gracia RM (2011) Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care 15:R15

    Article  PubMed  Google Scholar 

  20. Bennett-Guerrero E, Kahn RA, Moskowitz DM, Falcucci O, Bodian CA (2002) Comparison of arterial systolic pressure variation with other clinical parameters to predict the response to fluid challenges during cardiac surgery. Mt Sinai J Med 69:96–100

    PubMed  Google Scholar 

  21. Silva E, De Backer D, Creteur J, Vincent JL (2004) Effects of fluid challenge on gastric mucosal PCO2 in septic patients. Intensive Care Med 30:423–429

    Article  PubMed  Google Scholar 

  22. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  23. Heenen S, De Backer D, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10:R102

    Article  PubMed  Google Scholar 

  24. Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the respiratory systolic variation test and static preload indicators. Br J Anaesth 95:746–755

    Article  PubMed  CAS  Google Scholar 

  25. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  PubMed  Google Scholar 

  26. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  27. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  28. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    Article  PubMed  Google Scholar 

  29. Casserly B, Read R, Levy MM (2009) Hemodynamic monitoring in sepsis. Crit Care Clin 25:803–23, ix

    Google Scholar 

  30. O’Rourke MF, Yaginuma T (1984) Wave reflections and the arterial pulse. Arch Intern Med 144:366–371

    Article  PubMed  Google Scholar 

  31. Dorman T, Breslow MJ, Lipsett PA, Rosenberg JM, Balser JR, Almog Y, Rosenfeld BA (1998) Radial artery pressure monitoring underestimates central arterial pressure during vasopressor therapy in critically ill surgical patients. Crit Care Med 26:1646–1649

    Article  PubMed  CAS  Google Scholar 

  32. Hatib F, Jansen JR, Pinsky MR (2011) Peripheral vascular decoupling in porcine endotoxic shock. J Appl Physiol 111:853–860

    Article  PubMed  Google Scholar 

  33. Dufour N, Chemla D, Teboul JL, Monnet X, Richard C, Osman D (2011) Changes in pulse pressure following fluid loading: a comparison between aortic root (non-invasive tonometry) and femoral artery (invasive recordings). Intensive Care Med 37:942–949

    Article  PubMed  Google Scholar 

  34. Gravlee GP, Wong AB, Adkins TG, Case LD, Pauca AL (1989) A comparison of radial, brachial, and aortic pressures after cardiopulmonary bypass. J Cardiothorac Anesth 3:20–26

    Article  PubMed  CAS  Google Scholar 

  35. Kanazawa M, Fukuyama H, Kinefuchi Y, Takiguchi M, Suzuki T (2003) Relationship between aortic-to-radial arterial pressure gradient after cardiopulmonary bypass and changes in arterial elasticity. Anesthesiology 99:48–53

    Article  PubMed  Google Scholar 

  36. Stern DH, Gerson JI, Allen FB, Parker FB (1985) Can we trust the direct radial artery pressure immediately following cardiopulmonary bypass? Anesthesiology 62:557–561

    Article  PubMed  CAS  Google Scholar 

  37. Mignini MA, Piacentini E, Dubin A (2006) Peripheral arterial blood pressure monitoring adequately tracks central arterial blood pressure in critically ill patients: an observational study. Crit Care 10:R43

    Article  PubMed  Google Scholar 

  38. Vincent JL, Rhodes A, Perel A, Martin GS, Rocca GD, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M (2011) Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care 15:229

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vincent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierrakos, C., Velissaris, D., Scolletta, S. et al. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock?. Intensive Care Med 38, 422–428 (2012). https://doi.org/10.1007/s00134-011-2457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2457-0

Keywords

Navigation