Skip to main content

Advertisement

Log in

Eosinopenia, an early marker of increased mortality in critically ill medical patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Inflammatory markers may have a role in predicting severity of illness of intensive care unit (ICU) patients. The aim of this study is to determine whether low eosinophil count can predict 28-day mortality in medical ICU.

Methods

A prospective study over a 4-month period. To evaluate the prognosis information provided by eosinophil count, we compared the variations in eosinophil count from ICU admission to seventh day between patients who survived and those who died. The best cutoff value was chosen using Younden’s index for identification of patients with high risk of mortality. The patient outcome was 28-day mortality.

Results

A total of 200 patients were eligible. Overall 28-day ICU mortality was 28% (n = 56). At ICU admission, the median eosinophil count was significantly different in survivors [30 cells/mm³; interquartile range (IQR), 0–100 cells/mm³] and nonsurvivors (0 cells/mm³; IQR, 0–30 cells/mm³; P = 0.004). Absolute eosinophil counts remained significantly lower in nonsurvivors from admission to seventh day. The 28-day mortality was significantly higher in patients with eosinopenia <40 cells/mm3 (P = 0.011). Multivariate analysis by Cox model with time-dependent covariates demonstrated that eosinophil count <40 cells/mm3 [hazard ratio (HR), 1.85; 95% confidence interval (CI), 1.01–3.42; P = 0.046], high Acute Physiology and Chronic Health Evaluation (APACHE) II score (HR, 1.08; 95% CI, 1.01–1.14; P = 0.014), high Sequential Organ Failure Assessment (SOFA) score (HR, 1.14; 95% CI, 1.03–1.25; P = 0.008), and use of mechanical ventilation (HR, 27.48; 95% CI, 12.12–62.28; P < 0.001) were independent predictors of 28-day all-cause mortality.

Conclusion

This study suggests the possibility to use eosinophil cell count at admission and during the first 7 days as a prognosis marker of mortality in medical ICU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II A severity of disease classification system. Crit Care Med 13:818–829

    Article  PubMed  CAS  Google Scholar 

  2. Vincent JL, De Mendonca A, Cantrauine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of multicenter prospective study. Crit Care Med 26:1793–1800

    Article  PubMed  CAS  Google Scholar 

  3. Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on European/Nort American multicenter study. JAMA 270:2957–2963

    Article  PubMed  CAS  Google Scholar 

  4. Marshal JC, Cook DJ, Christou NV (1995) Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med 23:1638–1652

    Article  Google Scholar 

  5. Le Gall JR, Kler J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres D (1996) The logistic organ dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU scoring group. JAMA 276:802–810

    Article  PubMed  CAS  Google Scholar 

  6. Afessa B, Keegan MT, Mohammed Z, Finkielman JD, Peters SG (2004) Identifying potentially ineffective care in the sickest critically ill patients on the third ICU day. Chest 126:1905–1909

    Article  PubMed  Google Scholar 

  7. Baughman RP, Lower EE, Flessa HC, Tollerud DJ (1993) Thrombocytopenia in the intensive care unit. Chest 104:1243–1247

    Article  PubMed  CAS  Google Scholar 

  8. Stephan F, Hollande J, Richard O, Bonnet F (1999) Thrombocytopenia in a surgical ICU. Chest 115:1363–1370

    Article  PubMed  CAS  Google Scholar 

  9. Vanderschueren S, De Weerdt A, Malbrain M, Vankersschaever D, Frans E, Wilmer A, Bobbaers H (2000) Thrombocytopenia and prognosis in intensive care. Crit Care Med 28:1871–1876

    Article  PubMed  CAS  Google Scholar 

  10. Moreau D, Timsit JF, Vesin A, Garrouste-Orgeas M, Lassence AD, Zahar JR, Adrie C, Vincent F, Cohen Y, Schlemmer B, Azoulay E (2007) Platelet count decline: an early prognostic marker in critically ill patients with prolonged ICU stays. Chest 131:1735–1741

    Article  PubMed  Google Scholar 

  11. Jensen JU, Heslet L, Jensen TH, Espersen K, Steffensen P, Tvede M (2006) Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Crit Care Med 34:2596–2602

    Article  PubMed  CAS  Google Scholar 

  12. Lobo SMA, Lobo FRM, Bota DP, lopes-Ferreira F, Soliman HM, Mélot C, Vincent JL (2003) C-reactive protein levels correlate with patients mortality and organ failure in critically ill. Chest 123:2043–2049

    Article  PubMed  CAS  Google Scholar 

  13. Lopes-Ferreira F, Peres D, Bross A (2000) Serial evaluations of the SOFA score to predict outcome. JAMA 286:1754–1758

    Article  Google Scholar 

  14. Bass DA, Gonwa TA, Szejda P, Cousart MS, DeChatelet LR, McCall CE (1980) Eosinopenia of acute infection: production of eosinopenia by chemotactic factors of acute inflammation. J Clin Invest 65:1265–1271

    Article  PubMed  CAS  Google Scholar 

  15. Zappert J (1983) Ueber das vorkommen der eosinophilen zellen in menschlichen blute. Z Klin Med 23:227–308

    Google Scholar 

  16. Simon CE (1922) A manual of clinical diagnosis. Henry Klimpton, London 53

    Google Scholar 

  17. Abidi K, Khoudri I, Belayachi J, Madani N, Zekraoui A, Zeggwagh AA, Abouqal R (2008) Eosinopenia is a reliable marker of sepsis on admission to medical intensive care units. Crit Care 12:R59

    Article  PubMed  Google Scholar 

  18. Holland M, Alkhalil M, Chandromouli S, Janjua A, Babores M (2010) Eosinopenia as a marker of mortality and length of stay in patients admitted with exacerbations of obstructive pulmonary disease. Respirology 15:165–167

    Article  PubMed  Google Scholar 

  19. Charlson ME, Pompei P, Ales Kl, Mackenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383

    Article  PubMed  CAS  Google Scholar 

  20. Bone RC, Balk RA, Cerra Fb, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) American college of chest physicians/society of critical care medicine consensus conference: definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  21. Ewig S, Ruiz M, Mensa J, Marcos MA, Martinez JA, Arancibia F, Niederman MS, Torres A (1998) Severe community-acquired pneumonia: assessment of severity criteria. Am J Respir Crit Care Med 158:1102–1108

    PubMed  CAS  Google Scholar 

  22. Cox DR (1972) Regression models and life-tables. J R Stat Soc 34:187–220

    Google Scholar 

  23. Crowley J, Hu M (1977) Covariance analysis of heart transplant survival data. J Am Stat Assoc 72:27–36

    Article  Google Scholar 

  24. Therneau TM, Grambsch PM (2000) Modelling survival data: extending the Cox model. Springer, New York

    Google Scholar 

  25. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  PubMed  CAS  Google Scholar 

  26. Bass DA (1977) Reproduction of the eosinopenia of acute infection by passive transfer of a material obtained from inflammatory exudate. Infect Immun 15:410–416

    PubMed  CAS  Google Scholar 

  27. Rothenberg ME (1998) Eosinophilia. N Engl J Med 338:1592–1600

    Article  PubMed  CAS  Google Scholar 

  28. Bass DA (1975) Behavior of eosinophil leukocytes in acute inflammation. II. Eosinophil dynamics during acute inflammation. J Clin Invest 56:870–879

    Article  PubMed  CAS  Google Scholar 

  29. Gil H, Magy N, Mauny F, Dupond JL (2003) Value of eosinopenia in inflammatory disorders: an ‘old’ marker revisited. Rev Med Interne 24:431–435

    Article  PubMed  CAS  Google Scholar 

  30. Smithson A, Perello R, Nicolas JM (2009) Is eosinopenia a reliable marker of sepsis? Crit Care 13:409

    Article  PubMed  Google Scholar 

  31. Setterberg MJ, Newman W, Potti A, Smego RA (2004) Utility of eosinophil count as predictor of bacteremia. Clin Infect Dis 38:460–461

    Article  PubMed  Google Scholar 

  32. Metnitz B, Schaden E, Moreno R, Le Gall JR, Bauer P, Metnitz PG (2009) Austrian validation and customization of the SAPS 3 admission score. Intensive Care Med 35:616–622

    Article  PubMed  Google Scholar 

  33. Hardy JD (1950) The role of the adrenal cortex in the postoperative retention of salt and water. Ann Surg 132:189–197

    PubMed  CAS  Google Scholar 

  34. Evans EI, Butterfield WJH (1951) The stress response in the severely burned: an interim report. Ann Surg 134:588–611

    PubMed  CAS  Google Scholar 

  35. Sevitt S (1955) The spleen and blood eosinopenia. J Clin Pathol 8:42–46

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redouane Abouqal.

Additional information

Drs. Abidi Khalid and Belayachi Jihane contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abidi, K., Belayachi, J., Derras, Y. et al. Eosinopenia, an early marker of increased mortality in critically ill medical patients. Intensive Care Med 37, 1136–1142 (2011). https://doi.org/10.1007/s00134-011-2170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2170-z

Keywords

Navigation