Skip to main content

Advertisement

Log in

Lack of agreement between thermodilution and electrical velocimetry cardiac output measurements

  • Brief Report
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

The modified algorithm for the non-invasive determination of cardiac output (CO) by electrical bioimpedance—electrical velocimetry (EV®)—has been reported to give reliable results in comparison with echocardiography and pulmonary arterial thermodilution (PA-TD) in patients either before or after cardiac surgery. The present study was designed to determine whether EV®-CO measurements reflect intraindividual changes in CO during cardiac surgery.

Design

Prospective, observational study.

Setting

Operating room (OR) and intensive care unit (ICU) of a university hospital.

Patients

Twenty-nine patients undergoing elective cardiac surgery.

Interventions

None.

Measurements

CO was determined simultaneously by PA-TD and EV® after induction of anesthesia (t1) and 4.9 ± 3.5 h after ICU admission (t2).

Results

TD-CO was 3.9 ± 1.4 and 5.4 ± 1.1 l/min at t1 and t2 ( p < 0.0001). EV®-CO was 4.3 ± 1.1 and 4.9 ± 1.5 l/min at t1 and t2 ( p = 0.013). Bland–Altman analysis showed a bias of −0.4 l/min and 0.4 l/min and a precision of 3.2 and 3.6 l/min (34.3% and 67.4%) at t1 and t2, respectively. Analysis of the individual pre- to postoperative changes in CO with both methods revealed bidirectional changes in n = 12 patients and unidirectional changes with a difference greater than 50% and less than 50% in n = 9 and n = 8 patients, respectively.

Conclusions

The disagreement between PA-TD and EV®-CO measurements after anesthesia induction and after ICU admission, as well as the fact that thoracic bioimpedance did not adequately reflect pre- to postoperative changes in CO, questions the reliability of EV®-CO measurements in cardiac surgery patients and contrasts sharply with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R, Vallet B (2005) Year in review in intensive care medicine, 2004. II. Brain injury, hemodynamic monitoring and treatment, pulmonary embolism, gastrointestinal tract, and renal failure. Intensive Care Med 31:177–188

    Article  PubMed  Google Scholar 

  2. Bernstein DP, Lemmens HJM (2005) Stroke volume equation for impedance cardiography. Med Biol Eng Comput 43:443–450

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein DP (2007) Bernstein–Osypka stroke volume equation for impedance cardiography: citation correction. Intensive Care Med 33:923

    Article  PubMed  Google Scholar 

  4. Schmidt C, Theilmeier G, Van Aken H, Korsmeier P, Wirtz SP, Berendes E, Hoffmeier A (2005) Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 95:603–610

    Article  PubMed  CAS  Google Scholar 

  5. Suttner S, Schollhorn, Boldt J, Mayer J, Rohm KD, Lang K, Piper SN (2006) Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med 32:2053–2058

    Article  PubMed  Google Scholar 

  6. Meissner A, Korsmeier P, Van Aken H, Schmidt C, Etz C (2005) Evaluation of electrical velocimetry to determine cardiac output after cardiac surgery. Crit Care Med 33:A55

    Article  Google Scholar 

  7. Critchley LAH, Calcroft RM, Tan PYH, Kew J, Critchley JAJH (2000) The effect of lung injury and excessive lung fluid on impedance cardiac output measurements in the critically ill. Intensive Care Med 26:679–685

    Article  PubMed  CAS  Google Scholar 

  8. Perko G, Perko MJ, Jansen E, Secher NH (1991) Thoracic impedance as an index of body fluid balance during cardiac surgery. Acta Anaesthesiol Scand 35:568–571

    PubMed  CAS  Google Scholar 

  9. Aesculon® instruction manual (2004) Osypka Medical, Berlin, Germany

  10. Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerospace Med 37:1208–1212

    PubMed  CAS  Google Scholar 

  11. Sageman WS, Riffenburgh RH, Spiess BD (2002) Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 16:8–14

    Article  PubMed  Google Scholar 

  12. Atallah MM, Demain AD (1995) Cardiac output measurement: lack of agreement between thermodilution and thoracic electric bioimpedance in two clinical settings. J Clin Anesth 7:182–185

    Article  PubMed  CAS  Google Scholar 

  13. Van der Meer BJ, Woltjer HH, Sousman AM, Schreuder WO, Bulder ER, Huybregts MA, de Vries PM (1996) Impedance cardiography: importance of the equation and the electrode configuration. Intensive Care Med 22:1120–1124

    PubMed  Google Scholar 

  14. Van der Meer BJ, de Vries JP, Schreuder WO, Bulder ER, Eysman L, de Vries PM (1997) Impedance cardiography in cardiac surgery patients: abnormal body weight gives unreliable cardiac output measurements. Acta Anaesthesiol Scand 41:708–712

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Heringlake.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heringlake, M., Handke, U., Hanke, T. et al. Lack of agreement between thermodilution and electrical velocimetry cardiac output measurements. Intensive Care Med 33, 2168–2172 (2007). https://doi.org/10.1007/s00134-007-0828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0828-3

Keywords

Navigation