Skip to main content
Log in

Neuronal nitric oxide synthase deficiency decreases survival in bacterial peritonitis and sepsis

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the role of neuronal nitric oxide synthase (NOS1) in murine polymicrobial peritonitis and sepsis.

Design

Randomized experimental trial.

Setting

Animal research facility.

Subjects

B6129S NOS1+/+ and B6;129S4 NOS−/− mice.

Interventions

NOS1+/+ and NOS1−/− animals underwent cecal ligation and puncture (CLP) or sham surgery and received the NOS1 inhibitor 7-nitroindazole (7-NI) or vehicle.

Measurements and main results

After CLP, genetic deficiency and pharmacologic inhibition of NOS1 significantly increased risk of mortality [8.69 (3.27, 23.1), p < 0.0001 and 1.71 (1.00, 2.92) p = 0.05, hazard ratio of death (95% confidence interval) for NOS1−/− and 7-NI-treated NOS1+/+ respectively] compared with NOS1+/+ animals. In 7-NI-treated NOS1+/+ animals, there were increases (6 h) and then decreases (24 h), whereas in NOS−/− animals persistent increases in blood bacteria counts ( p = 0.04 for differing effects of 7-NI and NOS1−/−) were seen compared with NOS1+/+ animals. After CLP, NOS1−/− had upregulation of inducible NOS and proinflammatory cytokines and greater increases in serum tumor necrosis factor-α and interleukin-6 levels compared with NOS1+/+ mice (all p < 0.05). Following CLP, there were similar significant decreases in circulating leukocytes and lung lavage cells ( p ≤ 0.0008) and significant increases in peritoneal lavage cells ( p = 0.0045) in all groups. Over 6 h and 24 h following CLP, compared with NOS1+/+, NOS−/− mice had significantly higher peritoneal cell concentrations {respectively 0.40 ± 0.09 vs 0.79 ± 0.15 [log(× 104cells/ml)] averaged over both times p = 0.038}.

Conclusions

Deficiency and inhibition of NOS1 increases mortality, possibly by increasing proinflammatory cytokine response and impairing bacterial clearance after CLP. These data suggest that NOS1 is important for survival, bacterial clearance, and regulation of cytokine response during infection and sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albuszies G, Vogt J, Wachter U, Thiemermann C, Leverve XM, Weber S, Georgieff M, Radermacher P, Barth E (2007) The effect of iNOS deletion on hepatic gluconeogenesis in hyperdynamic murine septic shock. Intensive Care Med 33:1094–1101

    Article  PubMed  Google Scholar 

  2. Siegemund M, van Bommel J, Schwarte LA, Studer W, Girard T, Marsch S, Radermacher P, Ince C (2005) Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Med 31:985–992

    Article  PubMed  Google Scholar 

  3. Hollenberg SM, Broussard M, Osman J, Parrillo JE (2000) Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res 86:774–778

    PubMed  CAS  Google Scholar 

  4. Ullrich R, Scherrer-Crosbie M, Bloch KD, Ichinose F, Nakajima H, Picard MH, Zapol WM, Quezado ZM (2000) Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 102:1440–1446

    PubMed  CAS  Google Scholar 

  5. Cobb JP, Hotchkiss RS, Swanson PE, Chang K, Qiu Y, Laubach VE, Karl IE, Buchman TG (1999) Inducible nitric oxide synthase (iNOS) gene deficiency increases the mortality of sepsis in mice. Surgery 126:438–442

    PubMed  CAS  Google Scholar 

  6. Ichinose F, Hataishi R, Wu JC, Kawai N, Rodrigues AC, Mallari C, Post JM, Parkinson JF, Picard MH, Bloch KD, Zapol WM (2003) A selective inducible NOS dimerization inhibitor prevents systemic, cardiac, and pulmonary hemodynamic dysfunction in endotoxemic mice. Am J Physiol Heart Circ Physiol 285:H2524–2530

    PubMed  CAS  Google Scholar 

  7. Connelly L, Madhani M, Hobbs AJ (2005) Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived no in vivo. J Biol Chem 280:10040–10046

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita T, Kawashima S, Ohashi Y, Ozaki M, Ueyama T, Ishida T, Inoue N, Hirata K, Akita H, Yokoyama M (2000) Resistance to endotoxin shock in transgenic mice overexpressing endothelial nitric oxide synthase. Circulation 101:931–937

    PubMed  CAS  Google Scholar 

  9. Ichinose F, Buys ES, Neilan TG, Furutani EM, Morgan JG, Jassal DS, Graveline AR, Searles RJ, Lim CC, Kaneki M, Picard MH, Scherrer-Crosbie M, Janssens S, Liao R, Bloch KD (2007) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circ Res 100:130–139

    Article  PubMed  CAS  Google Scholar 

  10. Quezado Z, Besch V, Hergen A, Rivas R, Gerstenberger E, Cui X, Fitz Y, Eichacker P (2003) Neuronal nitric oxide synthase (NOS1) is protective during bacterial peritonitis and sepsis in mice. Am J Resp Crit Care Med 167:A553

    Google Scholar 

  11. Saini R, Patel S, Saluja R, Sahasrabuddhe AA, Singh MP, Habib S, Bajpai VK, Dikshit M (2006) Nitric oxide synthase localization in the rat neutrophils: immunocytochemical, molecular, and biochemical studies. J Leukoc Biol 79:519–528

    Article  PubMed  CAS  Google Scholar 

  12. Danson EJ, Choate JK, Paterson DJ (2005) Cardiac nitric oxide: emerging role for nNOS in regulating physiological function. Pharmacol Ther 106:57–74

    Article  PubMed  CAS  Google Scholar 

  13. Greenberg SS, Ouyang J, Zhao X, Giles TD (1998) Human and rat neutrophils constitutively express neural nitric oxide synthase mRNA. Nitric Oxide 2:203–212

    Article  PubMed  CAS  Google Scholar 

  14. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286

    Article  PubMed  CAS  Google Scholar 

  15. De Sanctis GT, MacLean JA, Hamada K, Mehta S, Scott JA, Jiao A, Yandava CN, Kobzik L, Wolyniec WW, Fabian AJ, Venugopal CS, Grasemann H, Huang PL, Drazen JM (1999) Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. J Exp Med 189:1621–1630

    Article  PubMed  Google Scholar 

  16. Ortiz PA, Garvin JL (2003) Cardiovascular and renal control in NOS-deficient mouse models. Am J Physiol Regul Integr Comp Physiol 284:R628–638

    PubMed  CAS  Google Scholar 

  17. Saraiva RM, Minhas KM, Raju SV, Barouch LA, Pitz E, Schuleri KH, Vandegaer K, Li D, Hare JM (2005) Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 112:3415–3422

    Article  PubMed  CAS  Google Scholar 

  18. Mattson DL, Meister CJ (2005) Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice. Am J Physiol Regul Integr Comp Physiol 289:R991–997

    PubMed  CAS  Google Scholar 

  19. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Article  PubMed  CAS  Google Scholar 

  20. Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, Wener AD, Wang G, Bevan SC, Newton DC, Marsden PA (2005) Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest 115:3128–3139

    Article  PubMed  CAS  Google Scholar 

  21. Lefer DJ, Jones SP, Girod WG, Baines A, Grisham MB, Cockrell AS, Huang PL, Scalia R (1999) Leukocyte–endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol 276:H1943–1950

    PubMed  CAS  Google Scholar 

  22. Greenberg SS, Ouyang J, Zhao X, Parrish C, Nelson S, Giles TD (1999) Effects of ethanol on neutrophil recruitment and lung host defense in nitric oxide synthase I and nitric oxide synthase II knockout mice. Alcohol Clin Exp Res 23:1435–1445

    PubMed  CAS  Google Scholar 

  23. Enkhbaatar P, Murakami K, Shimoda K, Mizutani A, McGuire R, Schmalstieg F, Cox R, Hawkins H, Jodoin J, Lee S, Traber L, Herndon D, Traber D (2003) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole attenuates acute lung injury in an ovine model. Am J Physiol Regul Integr Comp Physiol 285:R366–372

    PubMed  CAS  Google Scholar 

  24. Alexander HR, Doherty GM, Fraker DL, Block MI, Swedenborg JE, Norton JA (1991) Human recombinant interleukin-1 alpha protection against the lethality of endotoxin and experimental sepsis in mice. J Surg Res 50:421–424

    Article  PubMed  CAS  Google Scholar 

  25. Ichinose F, Mi WD, Miyazaki M, Onouchi T, Goto T, Morita S (1998) Lack of correlation between the reduction of sevoflurane MAC and the cerebellar cyclic GMP concentrations in mice treated with 7-nitroindazole. Anesthesiology 89:143–148

    Article  PubMed  CAS  Google Scholar 

  26. Bush MA, Pollack GM (2000) Pharmacokinetics and protein binding of the selective neuronal nitric oxide synthase inhibitor 7-nitroindazole. Biopharm Drug Dispos 21:221–228

    Article  PubMed  CAS  Google Scholar 

  27. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  28. Li E, Zhou P, Singer SM (2006) Neuronal nitric oxide synthase is necessary for elimination of Giardia lamblia infections in mice. J Immunol 176:516–521

    PubMed  CAS  Google Scholar 

  29. May MJ, Ghosh S (1998) Signal transduction through NF-kappa B. Immunol Today 19:80–88

    Article  PubMed  CAS  Google Scholar 

  30. Togashi H, Sasaki M, Frohman E, Taira E, Ratan RR, Dawson TM, Dawson VL (1997) Neuronal (type I) nitric oxide synthase regulates nuclear factor kappaB activity and immunologic (type II) nitric oxide synthase expression. Proc Natl Acad Sci U S A 94:2676–2680

    Article  PubMed  CAS  Google Scholar 

  31. Qu XW, Wang H, De Plaen IG, Rozenfeld RA, Hsueh W (2001) Neuronal nitric oxide synthase (NOS) regulates the expression of inducible NOS in rat small intestine via modulation of nuclear factor kappa B. FASEB J 15:439–446

    Article  PubMed  CAS  Google Scholar 

  32. Quezado Z, Parent C, Karzai W, Depietro M, Natanson C, Hammond W, Danner RL, Cui X, Fitz Y, Banks SM, Gerstenberger E, Eichacker PQ (2001) Acute G-CSF therapy is not protective during lethal E. coli sepsis. Am J Physiol Regul Integr Comp Physiol 281:R1177–1185

    PubMed  CAS  Google Scholar 

  33. Freeman BD, Quezado Z, Zeni F, Natanson C, Danner RL, Banks S, Quezado M, Fitz Y, Bacher J, Eichacker PQ (1997) rG-CSF reduces endotoxemia and improves survival during E. coli pneumonia. J Appl Physiol 83:1467–1475

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Yu Cao, Yvonne Fitz, and LaShon Middleton for their expert technical support. This research was supported by the Intramural Research Program of the NIH Clinical Center, National Institutes of Health. The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenaide M. N. Quezado.

Additional information

Drs. Cui and Besch contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X., Besch, V., Khaibullina, A. et al. Neuronal nitric oxide synthase deficiency decreases survival in bacterial peritonitis and sepsis. Intensive Care Med 33, 1993–2003 (2007). https://doi.org/10.1007/s00134-007-0814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0814-9

Keywords

Navigation