Skip to main content

Advertisement

Log in

Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To compare the diagnostic accuracy of lipopolysaccharide-binding protein (LBP) for sepsis in critically ill neonates and children with the two markers participating in the same inflammatory pathway, lipopolysaccharide and soluble CD14.

Design and setting

Prospective, observational study in a multidisciplinary neonatal and pediatric intensive care unit.

Patients

47 critically ill neonates and 49 critically ill children with systemic inflammatory response syndrome (SIRS) and suspected sepsis, classified into two groups: those with and those without sepsis.

Interventions

Serum LBP, lipopolysaccharide, soluble CD14, C-reactive protein, and procalcitonin were measured on 2 consecutive days. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and predictive values were evaluated.

Results

AUC for LBP on the first day of suspected infection was 0.97 in neonates aged under 48 h, 0.93 in neonates over 48 h and 0.82 in children. AUCs for lipopolysaccharide and soluble CD14 were 0.77 and 0.74 in neonates under 48 h, 0.53 and 0.76 in neonates over 48 h, and 0.72 and 0.53 in children. AUCs for procalcitonin and C-reactive protein were 0.65 and 0.89 in neonates under 48 h, 0.65 and 0.91 in neonates over 48 h, and 0.76 and 0.69 in children.

Conclusions

In critically ill neonates and children LBP concentration on the first day of suspected sepsis is a better marker of sepsis than lipopolysaccharide, soluble CD14, procalcitonin, and in neonates younger than 48 h and children, also a better marker than C-reactive protein. Lipopolysaccharide and soluble CD14 are not suitable markers for the differentiation of infectious and noninfectious SIRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Proulx F, Fayon M, Farrell C, Lacroix J, Gauthier M (1996) Epidemiology of sepsis and multiple dysfunction syndrome in children. Chest 109:1033–1037

    PubMed  CAS  Google Scholar 

  2. Turner D, Hammerman C, Rudensky B, Schlesinger Y, Goia C, Schimmel MS (2006) Procalcitonin in preterm infants during the first few days of life: introducing an age related nomogram. Arch Dis Child Fetal Neonatal Ed 91:F283–F286

    Article  PubMed  CAS  Google Scholar 

  3. Bonac B, Derganc M, Wraber B, Hojker S (2000) Interleukin-8 and procalcitonin in early diagnosis of early severe bacterial infection in critically ill neonates. Pflugers Arch [Suppl 5]440:R72–R74

    Article  PubMed  CAS  Google Scholar 

  4. Blommendahl J, Janas M, Laine S, Miettinen A, Ashorn P (2002) Comparison of procalcitonin with CRP and differential white blood cell count for diagnosis of culture-proven neonatal sepsis. Scand J Infect Dis 34:620–622

    Article  PubMed  Google Scholar 

  5. Pavcnik-Arnol M, Hojker S, Derganc M (2004) Lipopolysaccharide-binding protein in critically ill neonates and children with suspected infection: comparison with procalcitonin, interleukin-6, and C-reactive protein. Intensive Care Med 30:1454–1460

    Article  PubMed  Google Scholar 

  6. Lopez Sastre JB, Perez Solis D, Roques Serradilla V, Fernandez Colomer B, Coto Cotallo GD, Vidal XK, Narabona Lopez E, Garcia del Rio M, Sanchez Luna M, Belaustegui Cueto A, Moro Serrano M, Urbon Artero A, Alvaro Iglesias E, Cotero Lavin A, Martinez Vilalta E, Jimenez Cobos B, Grupo de Hospitales Castrillo (2006) Procalcitonin is not sufficiently reliable to be the sole marker of neonatal sepsis of nosocomial origin. BMC Pediatrics 6:16–22

    Article  PubMed  CAS  Google Scholar 

  7. Casado-Flores J, Blanco-Quiros A, Asensio J, Arranz E, Garrote JA, Nieto M (2003) Serum procalcitonin in children with suspected sepsis: a comparison with C-reactive protein and neutrophil count. Ped Crit Care Med 4:190–195

    Article  Google Scholar 

  8. Arkader R, Troster EJ, Lopes MR, Junior RR, Carcillo JA, Leone C, Okay TS (2006) Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Arch Dis Child 91:117–120

    Article  PubMed  CAS  Google Scholar 

  9. Zweigner J, Schumann RR, Weber JR (2006) The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microb Infect 8:946–952

    Article  CAS  Google Scholar 

  10. Opal SM, Scannon PJ, Vincent JL, White M, Carroll SF, Palardy JE, Parejo NA, Pribble JP, Lemke JH (1999) Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis 180:1584–1589

    Article  PubMed  CAS  Google Scholar 

  11. Blairon L, Wittebole X, Laterre PF (2003) Lipopolysaccharide-binding protein serum levels in patients with severe sepsis due to gram-positive and fungal infections. J Infect Dis 187:287–291

    Article  PubMed  Google Scholar 

  12. Berner R, Furll B, Stelter F, Drose J, Muller HP, Schutt C (2002) Elevated levels of lipopolysaccharide-binding protein and soluble CD14 in plasma in neonatal early-onset sepsis. Clin Diagn Lab Immunol 9:440–445

    Article  PubMed  CAS  Google Scholar 

  13. Behrendt D, Dembinski J, Heep A, Bartman P (2004) Lipopolysaccharide binding protein in preterm infants. Arch Dis Child Fetal Neonatal Ed 89:F551–F554

    Article  PubMed  CAS  Google Scholar 

  14. Orlikowsky TW, Trug C, Neunhoeffer F, Deperschmidt M, Eichner M, Poets CF (2006) Lipopolysaccharide-binding protein in noninfected neonates and those with suspected early-onset bacterial infection. J Perinatol 26:115–119

    Article  PubMed  CAS  Google Scholar 

  15. Triantafilou M, Triantafilou K (2005) The dynamics of LPS recognition: complex orchestration of multiple receptors. J Endotoxin Res 11:5–11

    PubMed  CAS  Google Scholar 

  16. Scheifele DW, Melton P, Whitchelo V (1981) Evaluation of the Limulus test for endotoxemia in neonates with suspected sepsis. J Pediatr 98:899–903

    Article  PubMed  CAS  Google Scholar 

  17. Blanco A, Solis G, Arranz E, Coto GD, Ramos A, Telleria (1996) Serum levels of CD14 in neonatal sepsis by Gram-positive and Gram-negative bacteria. Acta Paediatr 85:728–732

    PubMed  CAS  Google Scholar 

  18. Pavcnik-Arnol M, Hojker S, Derganc M (2006) Lipopolysaccharide-binding protein in critically ill children with suspected infection: comparison with lipopolysaccharide, soluble CD14, procalcitonin, and C-reactive protein. In: Book of abstracts of European Academy of Paediatrics; 2006 Oct 7–10, Barcelona. Barcelona: Kenes, p 62

  19. Goldstein B, Giroir B, Randolph A, the Members of the International Consensus Conference on Pediatric Sepsis (2005) International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6:2–8

    Article  PubMed  Google Scholar 

  20. Pollack MM, Patel KM, Ruttimann UE (1996) PRISM III: An updated Pediatric Risk of Mortality score. Crit Care Med 24:743–752

    Article  PubMed  CAS  Google Scholar 

  21. Tobias PS, Soldau K, Ulevitch RJ (1986) Isolation of a lipopolysaccharide-binding acute-phase reactant from rabbit serum. J Exp Med 164:777–793

    Article  PubMed  CAS  Google Scholar 

  22. Prucha M, Herold I, Zazula R, Dubska L, Dostal M, Hildebrand T, Hyanek J (2003) Significance of lipopolysaccharide-binding protein (an acute phase protein) in monitoring critically ill patients. Crit Care 7:R154–R159

    Article  PubMed  Google Scholar 

  23. Gaini S, Koldkjaer OG, Pedersen C, Pedersen SS (2006) Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: a prospective study. Crit Care 10:R53–R62

    Article  PubMed  Google Scholar 

  24. Myc A, Buck J, Gonin J, Reynolds B, Hammerling U, Emanuel D (1997) The level of lipopolysaccharide-binding protein is significantly increased in plasma in patients with the systemic inflammatory response syndrome. Clin Diagn Lab Immunol 4:113–116

    PubMed  CAS  Google Scholar 

  25. Takeshita S, Tsujimoto H, Kawase H, Kawamura Y, Sekine I (2002) Increased levels of lipopolysaccharide binding protein in plasma in children with Kawasaki disease. Clin Diagn Lab Immunol 9:205–206

    Article  PubMed  CAS  Google Scholar 

  26. Bortolussi R, Rajaraman K, Qing G, Rajaraman R (1997) Fibronectin enhances in vitro lipopolysaccharide priming of polymorphonuclear leukocytes. Blood 89:4182–4189

    PubMed  CAS  Google Scholar 

  27. Yaegashi Y, Shirakawa K, Sato N, Suzuki Y, Kojika M, Imai S, Takahashi G, Miyata M, Furusako S, Endo S (2005) Evaluation of a newly identified soluble CD14 subtype as a marker of sepsis. J Infect Chemother 11:234–238

    Article  PubMed  CAS  Google Scholar 

  28. Cohen J (2000) The detection and interpretation of endotoxaemia. Intensive Care Med 26:S51–S56

    Article  PubMed  Google Scholar 

  29. Martin TR, Rubenfeld GD, Ruzinski JT, Goodman RB, Steinberg KP, Leturcq DJ, Moriarty AM, Raghu G, Baughman RP, Hudson LD (1997) Relationship between soluble CD14, lipopolysaccharide binding protein, and the alveolar inflammatory response in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 155:937–944

    PubMed  CAS  Google Scholar 

  30. Bas S, Gauthier BR, Spenato U, Stingelin S, Gabay C (2004) CD14 is an acute-phase protein. J Immunol 172:4470–4479

    PubMed  CAS  Google Scholar 

  31. Scott Watson R, Carcillo JA (2005) Scope and epidemiology of pediatric sepsis. Pediatr Crit Care Med [Suppl]6:S3–S5

    Article  PubMed  Google Scholar 

  32. Resch B, Gusenleitner W, Muller WD (2003) Procalcitonin and interleukin-6 in the diagnosis of early-onset sepsis of the neonate. Acta Paediatr 92:243–245

    Article  PubMed  CAS  Google Scholar 

  33. Kitchens RL, Thompson PA (2003) Impact of sepsis-induced changes in plasma on LPS interactions with monocytes and plasma lipoproteins: roles of soluble CD14, LBP, and acute phase lipoproteins. J Endotoxin Res 9:113–118

    PubMed  CAS  Google Scholar 

  34. Lequier LL, Nikaidoh H, Leonard SR, Bokovoy JL, White ML, Scannon PJ, Giroir BP (2000) Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 117:1706–1712

    Article  PubMed  CAS  Google Scholar 

  35. Bolke E, Jehle PM, Trautmann M, Gotz I, Krebs B, Steinbach G, Orth K (2002) Different acute-phase response in newborns and infants undergoing surgery. Pediatr Res 51:333–338

    Article  PubMed  Google Scholar 

  36. Holmlund U, Hoglind A, Larsson AK, Nilsson C, Sverremark Ekstrom E (2003) CD14 and developmet of atopic disease at 2 years of age in children with atopic or non-atopic mothers. Clin Exp Allergy 33:455–463

    Article  PubMed  CAS  Google Scholar 

  37. Takeshita S, Nakatani K, Tsujimoto H, Kawamura Y, Kawase H, Sekine I (2000) Increased levels of circulating soluble CD14 in Kawasaki disease. Clin Exp Immunol 119:376–381

    Article  PubMed  CAS  Google Scholar 

  38. Carrillo EH, Gordon L, Goode E, Davis E, Polk HC (2001) Early elevation of soluble CD14 may help identify trauma patients at high risk for infection. J Trauma 50:810–816

    Article  PubMed  CAS  Google Scholar 

  39. Marshall JC, Foster D, Vincent JL, Cook DJ, Cohen J, Dellinger RP, Opal S, Abraham E, Brett SJ, Smith T, Mehta S, Derzko A, Romaschin A (2004) Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. J Infect Dis 190:527–534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by The Slovenian Research Agency, grant number J3–6245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Pavcnik-Arnol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavcnik-Arnol, M., Hojker, S. & Derganc, M. Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children. Intensive Care Med 33, 1025–1032 (2007). https://doi.org/10.1007/s00134-007-0626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0626-y

Keywords

Navigation