Skip to main content
Log in

Workplace NO and NO2 during combined treatment of infants with nasal CPAP and NO

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To determine the workplace concentrations of NO and NO2 in and around a paediatric incubator during inhaled NO (iNO) treatment and during an accidental emptying of NO cylinders into room air.

Design

We simulated iNO–nasal CPAP treatment in order to assess the impact on the occupational environment. Furthermore, two full NO cylinders for therapy, 1,000 ppm, 20 litres, 150 bar and 400 ppm, 10 litres, 150 bar, were emptied as rapidly as possible into an intensive care unit (ICU) room.

Setting

University hospital ICU.

Measurements and results

To correctly gauge the contribution from iNO–CPAP we constructed a system measuring breathing zone and room ventilation inlet-outlet values during a 10-ppm iNO treatment of a simulated infant. Maximal breathing zone values were 17.9 ± 7.0 (mean ± 95% CI) ppb for NO and 25.2 ± 4.8 ppb for NO2. If room inlet values were subtracted, the contributions to breathing zone values emanating from iNO–CPAP were 14.8 ± 4.6 ppb for NO and 14.6 ± 4.6 ppb for NO2. At the ventilation outlet the maximal contributions were 4.2 ± 2.9 ppb NO and 9.6 ± 4.3 ppb NO2. During rapid total release of a gas cylinder in the ICU room, simulating an accident, we found transient NO levels comparable to the high therapeutic dosing range, but only low NO2 levels.

Conclusions

Neither 8-h time-weighted average (TWA) nor 15 min short-term exposure limits (STEL) were exceeded during normal operation or during a simulated accident. The contribution of nitrogen oxides from treatment to workplace air were minor compared to those from ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stevens T, Blennow M, Soll R (2004) Early surfactant administration with brief ventilation vs selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev 3:CD003063

  2. Soll RF, Morley CJ (2001) Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev CD000510

  3. Jonsson B, Katz-Salamon M, Faxelius G, Broberger U, Lagercrantz H (1997) Neonatal care of very-low-birthweight infants in special-care units and neonatal intensive-care units in Stockholm. Early nasal continuous positive airway pressure versus mechanical ventilation: gains and losses. Acta Paediatr Suppl 419:4–10

    PubMed  CAS  Google Scholar 

  4. Verder H, Robertson B, Greisen G, Ebbesen F, Albertsen P, Lundstrom K, Jacobsen T (1994) Surfactant therapy and nasal continuous positive airway pressure for newborns with respiratory distress syndrome. Danish-Swedish Multicenter Study Group. N Engl J Med 331:1051–1055

    Article  PubMed  CAS  Google Scholar 

  5. Polin RA, Sahni R (2002) Newer experience with CPAP. Semin Neonatol 7:379–389

    Article  PubMed  Google Scholar 

  6. Van Marter LJ, Allred EN, Pagano M, Sanocka U, Parad R, Moore M, Susser M, Paneth N, Leviton A (2000) Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? The Neonatology Committee for the Developmental Network. Pediatrics 105:1194–1201

    Article  PubMed  Google Scholar 

  7. Lindwall R, Frostell CG, Lonnqvist PA (2002) Delivery characteristics of a combined nitric oxide nasal continuous positive airway pressure system. Paediatr Anaesth 12:530–536

    Article  PubMed  CAS  Google Scholar 

  8. Lindwall R, Blennow M, Svensson M, Jonsson B, Berggren-Bostrom E, Flanby M, Lonnqvist PA, Frostell C, Norman M (2005) A pilot study of inhaled nitric oxide in preterm infants treated with nasal continuous positive airway pressure for respiratory distress syndrome. Intensive Care Med 31:959–964

    Article  PubMed  Google Scholar 

  9. Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R (2006) Year in review in intensive care medicine, 2005. III. Nutrition, pediatric and neonatal critical care, and experimental. Intensive Care Med 32:490–500

    Article  PubMed  Google Scholar 

  10. McCurnin DC, Pierce RA, Chang LY, Gibson LL, Osborne-Lawrence S, Yoder BA, Kerecman JD, Albertine KH, Winter VT, Coalson JJ, Crapo JD, Grubb PH, Shaul PW (2005) Inhaled NO improves early pulmonary function and modifies lung growth and elastin deposition in a baboon model of neonatal chronic lung disease. Am J Physiol Lung Cell Mol Physiol 288:L450–L459

    Article  PubMed  CAS  Google Scholar 

  11. Ballard PL, Gonzales LW, Godinez RI, Godinez MH, Savani RC, McCurnin DC, Gibson LL, Yoder BA, Kerecman JD, Grubb PH, Shaul PW (2006) Surfactant composition and function in a primate model of infant chronic lung disease: effects of inhaled nitric oxide. Pediatr Res 59:157–162

    Article  PubMed  CAS  Google Scholar 

  12. Jones C (1998) Inhaled nitric oxide: are the safety issues being addressed? Intensive Crit Care Nurs 14:271–275

    Article  PubMed  CAS  Google Scholar 

  13. Markhorst DG, Leenhoven T, Uiterwijk JW, Meulenbelt J, van Vught AJ (1996) Occupational exposure during nitric oxide inhalational therapy in a pediatric intensive care setting. Intensive Care Med 22:954–958

    PubMed  CAS  Google Scholar 

  14. Putman E, van Golde LM, Haagsman HP (1997) Toxic oxidant species and their impact on the pulmonary surfactant system. Lung 175:75–103

    Article  PubMed  CAS  Google Scholar 

  15. Muller B, Seifart C, Barth PJ (1998) Effect of air pollutants on the pulmonary surfactant system. Eur J Clin Invest 28:762–777

    Article  PubMed  CAS  Google Scholar 

  16. Mourgeon E, Levesque E, Duveau C, Law-Koune JD, Charbit B, Ternissien E, Coriat P, Rouby JJ (1997) Factors influencing indoor concentrations of nitric oxide in a Parisian intensive care unit. Am J Respir Crit Care Med 156:1692–1695

    PubMed  CAS  Google Scholar 

  17. Kinsella JP, Griebel J, Schmidt JM, Abman SH (2002) Use of inhaled nitric oxide during interhospital transport of newborns with hypoxemic respiratory failure. Pediatrics 109:158–161

    Article  PubMed  Google Scholar 

  18. Schedin U, Frostell CG, Gustafsson LE (1999) Formation of nitrogen dioxide from nitric oxide and their measurement in clinically relevant circumstances. Br J Anaesth 82:182–192

    PubMed  CAS  Google Scholar 

  19. Moa G, Nilsson K, Zetterstrom H, Jonsson LO (1988) A new device for administration of nasal continuous positive airway pressure in the newborn: an experimental study. Crit Care Med 16:1238–1242

    Article  PubMed  CAS  Google Scholar 

  20. Merilainen PT (1990) A differential paramagnetic sensor for breath-by-breath oximetry. J Clin Monit 6:65–73

    Article  PubMed  CAS  Google Scholar 

  21. Phillips ML, Hall TA, Sekar K, Tomey JL (1999) Assessment of medical personnel exposure to nitrogen oxides during inhaled nitric oxide treatment of neonatal and pediatric patients. Pediatrics 104:1095–1100

    Article  PubMed  CAS  Google Scholar 

  22. Qureshi MA, Shah NJ, Hemmen CW, Thill MC, Kruse JA (2003) Exposure of intensive care unit nurses to nitric oxide and nitrogen dioxide during therapeutic use of inhaled nitric oxide in adults with acute respiratory distress syndrome. Am J Crit Care 12:147–153

    PubMed  Google Scholar 

  23. Johansson C, Hadenius A, Johansson PÅ, Jonson T (1999) SHAPE, The Stockholm Study on Health Effects of Air Pollution and their Economic Consequences Part I: NO2 and Particulate Matter in Stockholm. 41:1–71

  24. Benzing A, Loop T, Mols G, Geiger K (1999) Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury. Anesthesiology 91:945–950

    Article  PubMed  CAS  Google Scholar 

  25. Lee KH, Tan PS, Rico P, Delgado E, Kellum JA, Pinsky MR (1997) Low levels of nitric oxide as contaminant in hospital compressed air: physiologic significance? Crit Care Med 25:1143–1146

    Article  PubMed  CAS  Google Scholar 

  26. Pinsky MR, Genc F, Lee KH, Delgado E (1997) Contamination of hospital compressed air with nitric oxide: unwitting replacement therapy. Chest 111:1759–1763

    PubMed  CAS  Google Scholar 

  27. Tan PS, Genc F, Delgado E, Kellum JA, Pinsky MR (2002) Nitric oxide contamination of hospital compressed air improves gas exchange in patients with acute lung injury. Intensive Care Med 28:1064–1072

    Article  PubMed  Google Scholar 

  28. Berglund M, Boström CE, Bylin G, Ewetz L, Gustafsson LE, Moldeus P, Pershagen G, Victorin K (1993) Health risk evaluation of nitrogen oxides. Exposure. Scand J Work Environ Health 19 Suppl 2:1–72

    Google Scholar 

  29. Kraft M, Eikmann T, Kappos A, Kunzli N, Rapp R, Schneider K, Seitz H, Voss JU, Wichmann HE (2005) The German view: effects of nitrogen dioxide on human health – derivation of health-related short-term and long-term values. Int J Hyg Environ Health 208:305–318

    Article  PubMed  CAS  Google Scholar 

  30. Schedin U, Norman M, Gustafsson LE, Jonsson B, Frostell C (1997) Endogenous nitric oxide in the upper airways of premature and term infants. Acta Paediatr 86:1229–1235

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the European Space Agency, the Swedish Science Council, the Swedish Heart-Lung Foundation, Karolinska Institutet and the Stockholm County Council. INO Therapeutics (through Berit Lindh, Nordic manager) kindly provided study gases. The authors are indebted to Dr C-J. Wickerts, head of the ICU at Danderyd University Hospital, for access to ICU facilities as a setting for these studies. The author C.F. wishes to disclose a conflict of interest as he has a financial interest in the clinical use of inhaled nitric oxide, and L.G. is a minority shareholder in Aerocrine AB (publ.), a company that markets instruments for measurements of exhaled nitric oxide, and has given consultancy to gas industry concerning the use of nitric oxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lindwall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindwall, R., Svensson, M.E., Frostell, C.G. et al. Workplace NO and NO2 during combined treatment of infants with nasal CPAP and NO. Intensive Care Med 32, 2034–2041 (2006). https://doi.org/10.1007/s00134-006-0393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0393-1

Keywords

Navigation