Skip to main content
Log in

Alveolar recruitment assessed by positron emission tomography during experimental acute lung injury

  • Brief Report
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objectives

To compare changes in aerated lung volumes measured by positron emission tomography (PET) and inflation volume-pressure curve (V – P) of the respiratory system, and to evaluate the reliability of PET to assess alveolar recruitment.

Design and setting

Experimental study in six anesthetized and mechanically ventilated pigs in a PET facility in an experimental university laboratory.

Interventions

Lung injury was induced by oleic acid. Animals were randomly studied in four conditions: PEEP 0 cmH2O (ZEEP) in supine position (SP), PEEP 10 cmH2O in SP, ZEEP in prone position (PP) and PEEP in PP, each applied for 30 min.

Measurements and results

With PET aerated lung volume was obtained from pulmonary density analysis using transmission scan (VAtrans) and from nitrogen-13 kinetics on emission scan (VAem). Changes in VAtrans and VAem were computed as the difference in aerated volume between conditions. VAtrans and VAem did not differ between SP and PP, on either ZEEP or PEEP, suggesting no modification in relaxation volume of the respiratory system induced by posture. Changes in VAtrans or VAem were significantly correlated with changes in aerated volume assessed from superimposed V – P curves (R 2 = 0.74 and 0.75, respectively). Alveolar recruitment assessed by PET was significantly correlated with both PaO2 (R 2 = 0.61) and PaCO2 (R 2 = 0.40) variations induced by PEEP.

Conclusions

PET is a new reliable tool of scientific interest to image lung volume and alveolar recruitment during acute lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ranieri VM, Eissa NT, Corbeil C, Chasse M, Braidy J, Matar N, Milic-Emili J (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144:544–551

    PubMed  CAS  Google Scholar 

  2. Rouby JJ, Lu Q, Vieira S (2003) Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respir J Suppl 42:S27–S36

    Article  Google Scholar 

  3. Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711

    PubMed  CAS  Google Scholar 

  4. Schuster DP, Marklin GF, Mintun MA, Ter-Pogossian MM (1986) PET measurement of regional lung density. I. J Comput Assist Tomogr 10:723–729

    Article  PubMed  CAS  Google Scholar 

  5. Richard JC, Janier M, Lavenne F, Tourvieille C, Le Bars D, Costes N, Gimenez G, Guerin C (2005) Quantitative assessment of regional alveolar ventilation and gas volume using [13N]N2 washout and positron emission tomography. J Nucl Med 46:1375–1383

    PubMed  Google Scholar 

  6. Richard JC, Janier M, Costes N, Lavenne F, Lebars D, Tourvieille C, Bregeon F, Gimenez G, Guerin C. Imaging alveolar recruitment with positron emission tomography (PET): a validation study, 18th ESICM Annual Congress, Amsterdam, 2005

  7. Richard JC, Janier M, Lavenne F, Berthier V, Lebars D, Annat G, Decailliot F, Guérin C (2002) Effect of position, nitric oxide, and almitrine on lung perfusion in a porcine model of acute lung injury. J Appl Physiol 93:2181–2191

    PubMed  CAS  Google Scholar 

  8. Chen DL, Schuster DP (2004) Positron emission tomography with [18F]fluorodeoxyglucose to evaluate neutrophil kinetics during acute lung injury. Am J Physiol Lung Cell Mol Physiol 286:L834–L840

    Article  PubMed  CAS  Google Scholar 

  9. Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R, Marcolin R, Mascheroni D (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69:824–832

    Article  PubMed  CAS  Google Scholar 

  10. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    PubMed  CAS  Google Scholar 

  11. Lu Q, Vieira SRR, Richecoeur J, Puybasset L, Kalfon P, Coriat P, Rouby J-j (1999) A simple automated method for pressure-volume curves during mechanical ventilation. Am J Respir Crit Care Med 159:275–282

    PubMed  CAS  Google Scholar 

  12. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310

    Article  Google Scholar 

  13. Numa AH, Hammer J, Newth CJ (1997) Effect of prone and supine positions on functional residual capacity, oxygenation, and respiratory mechanics in ventilated infants and children. Am J Respir Crit Care Med 156:1185–1189

    PubMed  CAS  Google Scholar 

  14. Pelosi P, Tubiolo D, Mascheroni D, Vicardi P, Crotti S, Valenza F, Gattinoni L (1998) Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med 157:387–393

    PubMed  CAS  Google Scholar 

  15. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    PubMed  CAS  Google Scholar 

  16. Gattinoni L, Pelosi P, Vitale G, Pesenti A, D'Andrea L, Mascheroni D (1991) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 74:15–23

    Article  PubMed  CAS  Google Scholar 

  17. Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450

    PubMed  CAS  Google Scholar 

  18. Lu Q, Malbouisson LM, Mourgeon E, Goldstein I, Coriat P, Rouby JJ (2001) Assessment of PEEP-induced reopening of collapsed lung regions in acute lung injury: are one or three CT sections representative of the entire lung? Intensive Care Med 27:1504–1510

    Article  PubMed  CAS  Google Scholar 

  19. Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Gaël Bourdin, Veronique Berthier, and Veronique Gualda for their help with animal preparation, and gratefully acknowledge the support provided by the PET facility staff of the CERMEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Guerin.

Additional information

This research was supported by the Hospices civils de Lyon.

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-006-0372-6

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, JC., Le Bars, D., Costes, N. et al. Alveolar recruitment assessed by positron emission tomography during experimental acute lung injury. Intensive Care Med 32, 1889–1894 (2006). https://doi.org/10.1007/s00134-006-0331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0331-2

Keywords

Navigation