Skip to main content
Log in

Procalcitonin kinetics in pediatric patients with systemic inflammatory response after open heart surgery

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate procalcitonin and C-reactive protein as markers of inflammation severity and their value in predicting development of organ failure after pediatric open heart surgery.

Design

Prospective, observational, clinical study.

Setting

Single university hospital.

Patients

Thirty-three pediatric patients with systemic inflammatory response syndrome (SIRS; n = 19) and SIRS+organ failure (SIRS+OF; n = 14) following open heart surgery were included.

Measurements and results

Plasma procalcitonin and C-reactive protein levels were measured before and after the operation, and 1, 2, 3, and 4 days after surgery. Patients were evaluated daily to assess organ failure. Postoperative procalcitonin levels in the SIRS+OF group were significantly higher than in the SIRS group. C-reactive protein levels were similar between the groups throughout the study period. Peak procalcitonin levels were found to be positively correlated with aortic cross-clamp and cardiopulmonary bypass times, duration of mechanical ventilation, intensive care unit and hospital stay, mortality and organ failure development. Peak procalcitonin was found to be a good predictor of postoperative organ failure development and mortality. However, the predictive value of peak C-reactive protein for organ failure and mortality was found to be weak. Double-peak procalcitonin curves were observed in SIRS+OF patients with infection during the intensive care unit stay.

Conclusion

In the SIRS+OF group peak procalcitonin levels were found to be highly predictive for mortality and organ failure development, whereas C-reactive protein levels were not. Daily procalcitonin measurements in SIRS+OF patients may help identify the postoperative infection during the follow-up period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD (1983) Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 86:856–857

    Google Scholar 

  2. Butler J, Rocker GM, Westaby S (1993) Inflammatory response to cardiopulmonary bypass. Ann Thorac Cardiovasc Surg 55:552–559

    CAS  Google Scholar 

  3. Hall RI, Smith MS, Rocker G (1998) The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations. Anesth Analg 85:766–782

    Article  Google Scholar 

  4. Cremer J, Martin M, Redl H, Bahrami S, Abraham C, Graeter T, Haverich A, Schlag G, Borst HG (1996) Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg 6:1714–1720

    Article  Google Scholar 

  5. Wilkinson JD, Pollack MM, Ruttimann UE, Glass NL, Yek TS (1986) Outcome of pediatric patients with multiple organ system failure. Crit Care Med 14:271–274

    Article  PubMed  CAS  Google Scholar 

  6. Proulx F, Gauthier M, Nadeau D, Lacroix J, Farrell CA (1994) Timing and predictors of death in pediatric patients with multiple organ system failure. Crit Care Med 22:1025–1031

    Article  PubMed  CAS  Google Scholar 

  7. Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M (1996) Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest 109:1033–1037

    Article  PubMed  CAS  Google Scholar 

  8. Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C (1993) High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 341:515–518

    Article  PubMed  CAS  Google Scholar 

  9. Carsin H, Assicot M, Feger F, Roy O, Pennacino I, Le Bever H, Ainaud P, Bohuon C (1997) Evolution and significance of circulating procalcitonin levels compared with IL-6, TNF-alpha and endotoxin levels early after thermal injury. Burns 23:218–224

    Article  PubMed  CAS  Google Scholar 

  10. Mimoz O, Benoist JF, Edouard, AR, Assicot M, Bohuon C, Samii K (1998) Procalcitonin and C-RP during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med 24:185–188

    Google Scholar 

  11. Castelli GP, Pognani C, Meisner M, Stuani A, Belloni D, Sgarbi L (2004) Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care 8 (4): R234–242

    Google Scholar 

  12. Kerbaul F, Guidon C, Lejeune PJ, Mollo M, Mesana T, Gouin F (2002) Hyperprocalcitonemia is related to noninfectious postoperative severe systemic inflammatory response syndrome associated with cardiovascular dysfunction after coronary artery bypass graft surgery. J Thorac Cardiovasc Anesth 16:47–53

    CAS  Google Scholar 

  13. Meisner M, Tschaikowsky K, Palmaers T, Schmidt J (1999) Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit Care 3:45–50

    Article  PubMed  Google Scholar 

  14. Gerard Y, Hober D, Petitjean S, Assicot M, Bohuon C, Mouton Y, Wattre P (1995) High serum procalcitonin level in a 4-year old liver transplant recipient with a disseminated candidiasis. Infection 5:310–311

    Article  Google Scholar 

  15. Gendrel D, Assicot M, Raymond J, Moulin F, Francoual C, Badoual J, Bohuon C (1996) Procalcitonin as a marker for the early diagnosis of neonatal infection. J Pediatr 128:570–573

    Article  PubMed  CAS  Google Scholar 

  16. Bitkover CY, Hansson LO, Valen G, Vaage J (2000) Effects of cardiac surgery on some clinically used inflammation markers and procalcitonin. Scand Cardiovasc J 34:307–314

    Article  PubMed  CAS  Google Scholar 

  17. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  18. Vaughen VC, Litt IF (1992) Assessment of growth and development. In: Behrman RE (ed) Nelson textbook of pediatrics. Saunders, Philadelphia, pp 32–43

  19. Arkader R, Troster EJ, Abellan DM, Lopes MR, Junior RR, Carcillo JA, Okay TS (2002) Procalcitonin and C-reactive protein kinetics in postoperative pediatric cardiac surgical patients. J Cardiothorac Vasc Anesth 18:160–165

    Article  CAS  Google Scholar 

  20. Beghetti M, Rimensberger PC, Kalangos A, Habre W, Gervaix A (2003) Kinetics of procalcitonin, interleukin 6 and C-reactive protein after cardiopulmonary bypass in children. Cardiol Young 13:161–167

    Article  PubMed  Google Scholar 

  21. Adamik B, Kübler-Kielb J, Golebiowska B, Gamian A, Kubler A (2000) Effect of sepsis and cardiac surgery with cardiopulmonary bypass on plasma levels of nitric oxide metabolites, neopterin, and procalcitonin: correlation with mortality and postoperative complications. Intensive Care Med 26:1259–1267

    Article  PubMed  CAS  Google Scholar 

  22. Meisner M, Tschaikowsky K, Hurzler A, Schick C, Schuttler J (1998) Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med 24:185–188

    Article  PubMed  Google Scholar 

  23. Hansel M, Volk T, Döcke WD, Kern F, Tschirna D, Egerer K, Konertz W, Kox WJ (1998) Hyperprocalcitoninemia in patients with noninfectious SIRS and pulmonary dysfunction associated with cardiopulmonary bypass. Anesthesiology 89:93–104

    Article  PubMed  Google Scholar 

  24. Meisner M, Rauschmayer C, Schmidt J, Feyrer R (2002) Early increase of procalcitonin after cardiovascular surgery in patients with postoperative complications. Intensive Care Med 28:1094–1102

    Article  PubMed  CAS  Google Scholar 

  25. Aronen M, Leijal M, Meri S (1990) Value of C-reactive protein in reflecting the magnitude of complement activation in children undergoing open heart surgery. Intensive Care Med 16:128–132

    Article  PubMed  CAS  Google Scholar 

  26. Boralessa H, De Beer FC, Manchie A, Whitwam JG, Pepys MB (1986) C-reactive protein in patients undergoing cardiac surgery. Anaesthesia 41:11–15

    Article  PubMed  CAS  Google Scholar 

  27. Suprin E, Camus C, Gacouin A, Le Tulzo Y, Lavoue S, Feuillu A, Thomas R (2000) Procalcitonin: a valuable indicator of infection in a medical ICU? Intensive Care Med 26:1232–1238

    Article  PubMed  CAS  Google Scholar 

  28. Brunkhorst FM, Clark AL, Forycki ZF, Anker SD (1999) Pyrexia, procalcitonin, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation. Int J Cardiol 72:3–10

    Article  PubMed  CAS  Google Scholar 

  29. Mortensen RF (2001) C-reactive protein, inflammation, and innate immunity. Immunol Res 24:163–176

    Article  PubMed  CAS  Google Scholar 

  30. Vigushin DM, Pepys MB, Hawkins PN (1993) Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest 91:1351–1357

    Article  PubMed  CAS  Google Scholar 

  31. Dandona P, Nix D, Wilson MF, Aljada A, Love J, Assicot M, Bohuon C (1994) Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol MeTab 79:1605–1608

    Article  PubMed  CAS  Google Scholar 

  32. Hasper D, Humel M, Kleber FX, Reindl I, Volk HD (1998) Systemic inflammation in patients with heart failure. Eur Heart J 19:761–765

    Article  PubMed  CAS  Google Scholar 

  33. Lequier L, Nikaidoh H, Leonard SR, Nikaidoh H, Giroir BP, Stromberg D (2000) Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 117:1706–1712

    Article  PubMed  CAS  Google Scholar 

  34. Whitten CW, Hill GE, Ivy R, Greilich PE, Lipton JM (1998) Does duration of cardiopulmonary bypass or aortic cross-clamp, in the absence of blood and/or blood product administration, influence the IL-6 response to cardiac surgery? Anesth Analg 86:28–33

    Article  PubMed  CAS  Google Scholar 

  35. Habib RH, Zacharias A, Schwann TA, Riordan CJ, Engoren M, Durham SJ, Shah A (2005) Role of hemodilution anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med 33:1871–1874

    Article  PubMed  Google Scholar 

  36. Magee MJ, Jablonski KA, Stamou SC, Pfister AJ, Dewey TM, Dullum MK, Edgerton JR, Prince SL, Acuff TE, Corso PJ, Mack MJ (2002) Elimination of CPB improves early survival for multivessel coronary artery bypass patients. Ann Thorac Surg 73:1196–1202

    Article  PubMed  Google Scholar 

  37. Hammer S, Loeff M, Reichenspurner H, Daebritz S, Tiete A, Kozlik-Feldmann, Reichart B, Netz H (2001) Effect of cardiopulmonary bypass on myocardial function, damage and inflammation after cardiac surgery in newborns and children. Thorac Cardiovasc Surg 49:349–354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fund of Istanbul University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Celebi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celebi, S., Koner, O., Menda, F. et al. Procalcitonin kinetics in pediatric patients with systemic inflammatory response after open heart surgery. Intensive Care Med 32, 881–887 (2006). https://doi.org/10.1007/s00134-006-0180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0180-z

Keywords

Navigation