Skip to main content
Log in

Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Decreased diaphragmatic contractility and organ failure observed during sepsis is mediated by an overproduction of nitric oxide (.NO)-derived species, mitochondria being a major target of oxidative and nitrative stress. We tested the potential protective effects of (a) a novel synthetic antioxidant, the manganese(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP5+) and (b) the inducible .NO synthase inhibitor aminoguanidine (AG) on a rat model of sepsis.

Setting

University research laboratories.

Subjects and interventions

Sepsis was induced by cecal ligation and perforation in rats.

Measurements and results

Systemic hemodynamics, pulmonary gas exchange, in vitro diaphragmatic function and mitochondrial respiration were evaluated. Moreover, plasma and mitochondrial oxidative and nitrative stress parameters were investigated. Sepsis determined diaphragmatic dysfunction and a significant decrease in mitochondrial coupling and respiration. Oxidative stress was evidenced by decreased plasma antioxidants and increased lipid oxidation. Tyrosine nitration was increased in the plasma and mitochondria of the septic animals. These alterations were ameliorated or prevented by either MnTE-2-PyP5+ or AG.

Conclusions

Our results demonstrate that overproduction of .NO and .NO-derived reactive species play a critical role in mitochondrial impairment and diaphragmatic function during sepsis. More importantly, AG but mainly the novel metalloporphyrin MnTE-2-PyP5+ were able to ameliorate diaphragmatic and mitochondrial dysfunction and could contribute to preventing organ failure during severe sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112:235–243

    CAS  PubMed  Google Scholar 

  2. Wheeler AP, Bernard GR (1999) Treating patients with severe sepsis. N Engl J Med 340:207–214

    Article  CAS  PubMed  Google Scholar 

  3. Hussain SN (1998) Respiratory muscle dysfunction in sepsis. Mol Cell Biochem 179:125–134

    Article  CAS  PubMed  Google Scholar 

  4. Hussain SN, Simkus G, Roussos C (1985) Respiratory muscle fatigue: a cause of ventilatory muscle failure in septic shock. J Appl Physiol 58:2033–2040

    CAS  PubMed  Google Scholar 

  5. Callahan LA, Stofan DA, Szweda LI, Nethery DE, Supinski GS (2001) Free radicals alter maximal diaphragmatic mitochondrial oxygen consumption in endotoxin-induce sepsis. Free Radic Biol Med 30:129–138

    Article  CAS  PubMed  Google Scholar 

  6. Lanone S, Mebazaa A, Heymes C, Henin D, Poderoso JJ, Panis Y, Zedda C, Billiar T, Payen D, Aubier M, Boczkowski J (2000) Muscular contractile failure in septic patients: role of the inducible nitric oxide synthase pathway. Am J Respir Crit Care Med 162:2308–2315

    CAS  PubMed  Google Scholar 

  7. Fijimura N, Sumita S, Aimono M, Masuda Y, Shichinohe Y, Naritmatsu E, Namiki A (2000) Effect of free radical scavengers on diaphragmatic contractility in septic peritonitis. Am J Respir Crit Care Med 162:2159–2165

    PubMed  Google Scholar 

  8. Fijimura N, Sumita S, Narimatsu E (2000) Alteration in diaphragmatic contractility during septic peritonitis in rats: effect of polyethylene glycol-absorbed superoxide dismutase. Crit Care Med 28:2406–2414

    PubMed  Google Scholar 

  9. Lin MC, Ebihara S, El Dwairi Q, Hussain SN, Yang L, Gottfried SB, Comtois A, Petrof BJ (1998) Diaphragm sarcolemmal injury is induced by sepsis and alleviated by nitric oxide synthase inhibition. Am J Respir Crit Care Med 158:1656–1663

    CAS  PubMed  Google Scholar 

  10. Supinski G, Stofan D, Callahan LA, Nethery D, Nosek TM, DiMarco A (1999) Peroxynitrite induces contractile dysfunction and lipid peroxidation in the diaphragm. J Appl Physiol 87:783–791

    CAS  PubMed  Google Scholar 

  11. Supinski G, Nethery D, Stofan D, DiMarco A (1997) Effect of free radical scavengers on diaphragmatic fatigue. Am J Respir Crit Care Med 155:622–629

    CAS  PubMed  Google Scholar 

  12. Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR (1995) Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 23:646–651

    Article  CAS  PubMed  Google Scholar 

  13. Armour J, Tyml K, Lidington D, Wilson JX (2001) Ascorbate prevents microvascular dysfunction in skeletal muscle of the septic rat. J Appl Physiol 90:795–803

    CAS  PubMed  Google Scholar 

  14. Galley HF, Howdle PD, Walker BE, Webster NR (1997) The effects of intravenous antioxidants in patients with septic shock. Free Radic Biol Med 23:768–774

    Article  CAS  PubMed  Google Scholar 

  15. Radi R, Denicola A, Ferrer G, Alvarez B, Rubbo H (2000) The biological chemistry of peroxynitrite. In: L. Ignaro (ed) Nitric oxide. Biology and pathobiology. Advances in Pharmacology. Academic Press, San Diego, CA, pp 57–82

  16. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30:463–488

    Article  CAS  PubMed  Google Scholar 

  17. Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464

    Article  CAS  PubMed  Google Scholar 

  18. Boczkowski J, Lisdero CL, Lanone S, Samb A, Carreras M, Boveris A, Aubier M, Poderoso JJ (1999) Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB J 13:1637–1647

    CAS  PubMed  Google Scholar 

  19. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  CAS  PubMed  Google Scholar 

  20. Radi R, Cassina A, Hodara R (2002) Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 383:401–409

    CAS  PubMed  Google Scholar 

  21. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    Article  CAS  PubMed  Google Scholar 

  22. Ferrer-Sueta G, Quijano C, Alvarez B, Radi R (2002) Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Methods Enzymol 349:23–37

    CAS  PubMed  Google Scholar 

  23. Ferrer-Sueta G, Batinic-Haberge I, Spasojevic I, Fridovich I, Radi R (1999) Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem Res Toxicol 1999 12:442–449

    Article  CAS  Google Scholar 

  24. Wichterman KA, Baue AE, Chaudry IH (1990) Sepsis and septic shock: a review of laboratory models and a proposal. J Surg Res 29:189–201

    Article  Google Scholar 

  25. Fink MP, Heard SO (1990) Laboratory models of sepsis and septic shock. J Surg Res 49:186–196

    Article  CAS  PubMed  Google Scholar 

  26. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  27. Teissier E, Walters-Laporte E, Duhem C, Luc G, Fruchart JC, Duriez P (1996) Rapid quantification of alpha-tocopherol in plasma and low- and high-density lipoproteins. Clin Chem 42:430–435

    CAS  PubMed  Google Scholar 

  28. Mohr D, Stocker R (1996) Selective and sensitive measurement of vitamin C, ubiquinol and other low-molecular weight antioxidants. In: Punchard NA, Kelly J (eds) Free radicals: a practical approach. Oxford University Press, New York, pp 271–285

  29. Trostchansky A, Batthyany C, Botti H, Radi R, Denicola A, Rubbo H (2001) Formation of lipid-protein adducts in low-density lipoprotein by fluxes of peroxynitrite and its inhibition by nitric oxide. Arch Biochem Biophys 395:225–232

    Article  CAS  PubMed  Google Scholar 

  30. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  31. Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R (2000) Cytochrome c nitration by peroxynitrite. J Biol Chem 275:21409–21415

    Article  CAS  PubMed  Google Scholar 

  32. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162:3356–3366

    CAS  PubMed  Google Scholar 

  33. Hurtado FJ, Gutierrez AM, Silva N, Fernandez E, Khan AE, Gutierrez G (1992) Role of tissue hypoxia as the mechanism of lactic acidosis during E. coli endotoxemia. J Appl Physiol 72:1895–1901

    CAS  PubMed  Google Scholar 

  34. Gutierrez G, Hurtado FJ, Fernandez E (1995) Inhibitory effects of Escherichia coli endotoxin on skeletal muscle contractility. Crit Care Med 23:308–315

    Article  CAS  PubMed  Google Scholar 

  35. Boulos M, Astiz ME, Barua RS, Osman M (2003) Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly (ADP-ribose) synthase. Crit Care Med 31:353–358

    Article  CAS  PubMed  Google Scholar 

  36. Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ (2001) Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci 98:12056–12061

    Article  CAS  PubMed  Google Scholar 

  37. Elfering SL, Haynes VL, Traaseth NJ, Ettl A, Giulivi C (2004) Aspects, mechanisms and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. Am J Physiol Heart Circ Physiol 286:H22–H29

    CAS  PubMed  Google Scholar 

  38. Sambe A, Ungureaneu-Longrois D, Danialou G, Lanone S, Benessiano J, Aubier M, Boczkowski J (1998) Role of nitric oxide on diaphragmatic contractile failure in Escherichia coli endotoxemic rats. Comp Biochem Physiol A Mol Integr Physiol 119:167–175

    Article  CAS  PubMed  Google Scholar 

  39. Mikawa K, Kodama SI, Nishina K, Obara H (2001) ONO-1714, a new inducible nitric oxide synthase inhibitor, attenuates diaphragmatic dysfunction associated with cerulein-induced pancreatitis in rats. Crit Care Med 29:1215–1221

    Article  CAS  PubMed  Google Scholar 

  40. Ebihara S, Hussain SN, Danialou G, Cho WK, Gottfried SB, Petrof BJ (2002) Mechanical ventilation protects against diaphragm injury in sepsis. Interactions of oxidative and mechanical stresses. Am J Respir Crit Care Med 165:221–228

    PubMed  Google Scholar 

  41. Giardino I, Fard A, Hatchell D and Brownlee M (1998) Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation and oxidant-induced apoptosis. Diabetes 47:1114–1120

    CAS  PubMed  Google Scholar 

  42. Chen A, Taguchi T, Aoyama A, Sugiura M, Haruna M, Wang M, Miwa I (2003) Antioxidant activity of a Schiff base of pyridoxal and aminoguanidine. Free Radic Biol Med 35:1392–1403

    Article  CAS  PubMed  Google Scholar 

  43. Salvemini D, Cuzzocrea S (2003) Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine. Crit Care Med 31(Suppl):S29–S38

    Article  CAS  PubMed  Google Scholar 

  44. Wang W, Jittikanont S, Falk SA, Li P, Feng L, Gengaro PE, Poole BD, Bowler RP, Day BJ, Crapo JD, Schrier RW (2002) Interaction among nitric oxide, reactive oxygen species and antioxidants during endotoxemia-related acute renal failure. Am J Physiol Renal Physiol 284:F532–F537

    Google Scholar 

  45. Sheng H, Enghild JJ, Bowler R, Patel M, Batinic-Haberle I, Calvi CL, Day BJ, Pearlstein RD, Crapo JD, Warner DS (2002) Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic Biol Med 33:947–961

    Article  CAS  PubMed  Google Scholar 

  46. Kettle AJ, van Dalen CJ, Winterbourn CC (1997) Peroxynitrite and myeloperoxidase leave the same footprint in protein nitration. Redox Rep 3:257–258

    CAS  PubMed  Google Scholar 

  47. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    Article  CAS  PubMed  Google Scholar 

  48. Baldus S, Eiserich JP, Brennan ML, Jackson RM, Alexander CB, Freeman BA (2002) Spatial mapping of pulmonary and vascular nitrotyrosine reveals the pivotal role of myeloperoxidase as a catalyst for tyrosine nitration in inflammatory diseases. Free Radic Biol Med. 33:1010

    Google Scholar 

Download references

Acknowledgements

We thank Ines Batinic-Haberle from Duke University for providing the MnTE-2-PyP5+.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Hurtado.

Additional information

This work was supported in part by FOGARTY-NIH, Wellcome Trust and Guggenheim Foundation for Homero Rubbo and Rafael Radi, and the Howard Hughes Medical Institute for Rafael Radi, and by PRONBIO, Fundación Manuel Pérez for Nicolás Nin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nin, N., Cassina, A., Boggia, J. et al. Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition. Intensive Care Med 30, 2271–2278 (2004). https://doi.org/10.1007/s00134-004-2427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2427-x

Keywords

Navigation