Skip to main content
Log in

Effects of thoracic epidural anaesthesia on intestinal microvascular perfusion in a rodent model of normotensive endotoxaemia

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate whether sympathetic blockade by means of thoracic epidural anaesthesia (TEA) increases intestinal perfusion during normotensive endotoxaemia.

Design

A prospective, randomised and controlled animal study.

Setting

Animal laboratory in a university hospital.

Subjects

Sprague-Dawley male rats.

Interventions

The rats were anaesthetised with urethane and ketamine, mechanically ventilated and haemodynamically monitored. Lidocaine or saline were infused continuously via thoracic epidural catheters followed by a continuous intravenous infusion of Escherichia coli lipopolysaccharide (1.5 mg/kg per h). Densities of perfused and non-perfused capillaries (i.e., with and without erythrocyte perfusion, respectively) as well as erythrocyte velocity in both the mucosa and the muscularis of the terminal ileum were determined using intravital microscopy.

Measurements and results

Measurements were performed at baseline, after 30 min of epidural infusion as well as after 60 and 120 min of lipopolysaccharide infusion. In animals receiving TEA, mean arterial pressure and heart rate were significantly reduced throughout the experiment. In the muscularis the endotoxaemia-induced increase in non-perfused capillaries was absent with epidural lidocaine (0 [0/0] versus 39 [36/137] cm-1, median [25th/75th percentile]), whereas in the mucosa perfused capillary density declined to a greater extent than in controls (−47 [−53/−23]%) versus −19 [−34/+10]%, p<0.05). Erythrocyte velocity decreased with endotoxaemia and was not influenced by epidural lidocaine.

Conclusions

Microvascular perfusion data during endotoxaemia show a redistribution of blood flow towards the mucosa. TEA seems to impede this redistribution resulting in improved muscularis and worsened mucosal microvascular perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sugita T, Watarida S, Katsuyama K, Nakajima Y, Yamamoto R, Matsuno S, Tabata R, Mori A (1998) Endotoxemia after elective surgery for abdominal aortic aneurysm and the effect of early oral feeding. J Cardiovasc Surg (Torino) 39:547–549

    Google Scholar 

  2. Kanwar S, Windsor AC, Welsh F, Barclay GR, Guillou PJ, Reynolds JV (2000) Lack of correlation between failure of gut barrier function and septic complications after major upper gastrointestinal surgery. Ann Surg 231:88–95

    Article  CAS  PubMed  Google Scholar 

  3. Christenson JT, Schmuziger M, Maurice J, Simonet F, Velebit V (1994) Postoperative visceral hypotension: the common cause for gastrointestinal complications after cardiac surgery. Thorac Cardiovasc Surg 42:152–157

    CAS  PubMed  Google Scholar 

  4. Kienle P, Weitz J, Reinshagen S, Magener A, Autschbach F, Benner A, Stern J, Herfarth C (2001) Association of decreased perfusion of the ileoanal pouch mucosa with early postoperative pouchitis and local septic complications. Arch Surg 136:1124–1130

    Article  CAS  PubMed  Google Scholar 

  5. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple organ-failure syndrome. Arch Surg 121:196–208

    CAS  PubMed  Google Scholar 

  6. Deitch EA (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125:403–404

    CAS  PubMed  Google Scholar 

  7. Johansson K, Ahn H, Lindhagen J, Tryselius U (1988) Effect of epidural anaesthesia on intestinal blood flow. Br J Surg 75:73–76

    CAS  PubMed  Google Scholar 

  8. Kapral S, Gollmann G, Bachmann D, Prohaska B, Likar R, Jandrasits O, Weinstabl C, Lehofer F (1999) The effects of thoracic epidural anesthesia on intraoperative visceral perfusion and metabolism. Anesth Analg 88:402–406

    Article  CAS  PubMed  Google Scholar 

  9. Spackman DR, McLeod AD, Prineas SN, Leach RM, Reynolds F (2000) Effect of epidural blockade on indicators of splanchnic perfusion and gut function in critically ill patients with peritonitis: a randomised comparison of epidural bupivacaine with systemic morphine. Intensive Care Med 1638–1645

    Google Scholar 

  10. Sielenkamper AW, Eicker K, Van Aken H (2000) Thoracic epidural anesthesia increases mucosal perfusion in ileum of rats. Anesthesiology 93:844–851

    Article  CAS  PubMed  Google Scholar 

  11. Adolphs J, Schmidt DK, Mousa SA, Kamin B, Korsukewitz I, Habazettl H, Schafer M, Welte M (2003) Thoracic epidural anesthesia attenuates hemorrhage-induced impairment of intestinal perfusion in rats. Anesthesiology 99:685–692

    Article  CAS  PubMed  Google Scholar 

  12. Adolphs J, Schmidt DK, Mousa SA, Schafer M, Habazettl H, Welte M (2002) Thoracic epidural anesthesia prevents perfusion deficits in endotoxemic rats (abstract). Anesthesiology 96:A647

    Google Scholar 

  13. Nolte D, Zeintl H, Steinbauer M, Pickelmann S, Messmer K (1995) Functional capillary density: an indicator of tissue perfusion? Int J Microcirc Clin Exp 15:244–249

    CAS  PubMed  Google Scholar 

  14. Freise H, Bruckner UB, Spiegel HU (2001) Animal models of sepsis. J Invest Surg 14:195–212

    Article  CAS  PubMed  Google Scholar 

  15. Longnecker DE, Harris PD (1980) Microcirculatory actions of general anesthetics. Fed Proc 39:1580–1583

    CAS  PubMed  Google Scholar 

  16. Luebbe AS, Harris PD, Garrison RN (1998) E. Coli bacteremia-induced changes in the skeletal muscle microcirculation vary with anesthetics. Croat Med J 39:392–400

    CAS  PubMed  Google Scholar 

  17. Bonica JJ (1968) Autonomic innervation of the viscera in relation to nerve block. Anesthesiology 29:793–813

    CAS  PubMed  Google Scholar 

  18. Vagts DA, Iber T, Szabo B, Haberstroh J, Reising K, Puccini M, Geiger K, Noldge-Schomburg GF (2003) Effects of epidural anaesthesia on intestinal oxygenation in pigs. Br J Anaesth 90:212–220

    Article  CAS  PubMed  Google Scholar 

  19. Lundberg J, Lundberg D, Norgren L, Ribbe E, Thorne J, Werner O (1990) Intestinal hemodynamics during laparotomy: effects of thoracic epidural anesthesia and dopamine in humans. Anesth Analg 71:9–15

    CAS  PubMed  Google Scholar 

  20. Aitkenhead AR, Gilmour DG, Hothersall AP, Ledingham IM (1980) Effects of subarachnoid spinal nerve block and arterial PCO2 on colon blood flow in the dog. Br J Anaesth 52:1071–1077

    CAS  PubMed  Google Scholar 

  21. Lundberg J, Biber B, Henriksson BA, Martner J, Raner C, Werner O, Winso O (1991) Effects of thoracic epidural anesthesia and adrenoceptor blockade on the cardiovascular response to dopamine in the dog. Acta Anaesthesiol Scand 35:359–365

    CAS  PubMed  Google Scholar 

  22. Otton PE, Wilson EJ (1966) The cardiocirculatory effects of upper thoracic epidural analgesia. Can Anaesth Soc J 13:541–549

    CAS  PubMed  Google Scholar 

  23. Hogan QH, Stadnicka A, Stekiel TA, Bosnjak ZJ, Kampine JP (1993) Effects of epidural and systemic lidocaine on sympathetic activity and mesenteric circulation in rabbits. Anesthesiology 79:1250–1260

    CAS  PubMed  Google Scholar 

  24. Schmidt H, Secchi A, Wellmann R, Bach A, Bhrer H, Martin E (1996) Dopexamine maintains intestinal villus blood flow during endotoxemia in rats. Crit Care Med 24:1233–1237

    Article  CAS  PubMed  Google Scholar 

  25. Xu D, Qi L, Guillory D, Cruz N, Berg R, Deitch EA (1993) Mechanisms of endotoxin-induced intestinal injury in a hyperdynamic model of sepsis. J Trauma 34:676–682

    CAS  PubMed  Google Scholar 

  26. Feuk U, Jakobson S, Norlen K (1987) The effects of alpha adrenergic blockade on central haemodynamics and regional blood flows during positive pressure ventilation. An experimental study in the pig. Acta Anaesthesiol Scand 31:748–755

    CAS  PubMed  Google Scholar 

  27. Schulte-Steinberg O, Rahlfs VW (1977) Spread of extradural analgesia following caudal injection in children. A statistical study. Br J Anaesth 49:1027–1034

    CAS  PubMed  Google Scholar 

  28. Hahn RG (1992) Haemoglobin dilution from epidural-induced hypotension with and without fluid loading. Acta Anaesthesiol Scand 36:241–244

    CAS  PubMed  Google Scholar 

  29. Holte K, Foss NB, Svensen C, Lund C, Madsen JL, Kehlet H (2004) Epidural anesthesia, hypotension and changes in intravascular volume. Anesthesiology 100:281–286

    Article  PubMed  Google Scholar 

  30. Van Bommel J, Siegemund M, Henny CP, Trouwborst A, Ince C (2001) Critical hematocrit in intestinal tissue oxygenation during severe normovolemic hemodilution. Anesthesiology 94:152–160

    PubMed  Google Scholar 

  31. Granger DN, Kvietys PR, Perry MA (1982) Role of exchange vessels in the regulation of intestinal oxygenation. Am J Physiol 242:G570–G574

    CAS  PubMed  Google Scholar 

  32. Gosche JR, Garrison RN (1991) Prostaglandins mediate the compensatory responses to hemorrhage in the small intestine of the rat. J Surg Res 50:584–588

    Article  CAS  PubMed  Google Scholar 

  33. Hiltebrand LB, Krejci V, tenHoevel ME, Banic A, Sigurdsson GH (2003) Redistribution of microcirculatory blood flow within the intestinal wall during sepsis and general anesthesia. Anesthesiology 98:658–669

    Article  PubMed  Google Scholar 

  34. Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med 24:1345–1351

    Article  CAS  PubMed  Google Scholar 

  35. Massberg S, Eisenmenger S, Enders G, Krombach F, Messmer K (1998) Quantitative analysis of small intestinal microcirculation in the mouse. Res Exp Med (Berl) 198:23–35

    Article  Google Scholar 

  36. Neviere RR, Pitt-Hyde ML, Piper RD, Sibbald WJ, Potter RF (1999) Microvascular perfusion deficits are not a prerequisite for mucosal injury in septic rats. Am J Physiol 276:G933–G940

    CAS  PubMed  Google Scholar 

  37. Lazar G, Kaszaki J, Abraham S, Horvath G, Wolfard A, Szentpali K, Paszt A, Balogh A, Boros M (2003) Thoracic epidural anesthesia improves the gastric microcirculation during experimental gastric tube formation. Surgery 134:799–805

    Article  PubMed  Google Scholar 

  38. Gould TH, Grace K, Thorne G, Thomas M (2002) Effect of thoracic epidural anaesthesia on colonic blood flow. Br J Anaesth 89:446–451

    Article  CAS  PubMed  Google Scholar 

  39. Kennedy WF Jr, Everett GB, Cobb LA, Allen GD (1971) Simultaneous systemic and hepatic hemodynamic measurements during high peridural anesthesia in normal man. Anesth Analg 50:1069–1077

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Ursula Hilse, medical technician, for expert technical assistance. We also wish to thank Christoph Stein, M.D., Department of Anaesthesiology and Axel R. Pries, M.D., Institute of Physiology, both Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, for support and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Adolphs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adolphs, J., Schmidt, D.K., Korsukewitz, I. et al. Effects of thoracic epidural anaesthesia on intestinal microvascular perfusion in a rodent model of normotensive endotoxaemia. Intensive Care Med 30, 2094–2101 (2004). https://doi.org/10.1007/s00134-004-2426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2426-y

Keywords

Navigation