Skip to main content

Advertisement

Log in

Role of 5-lipoxygenase in the multiple organ failure induced by zymosan

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

This study investigated the role of 5-lipoxygenase in the pathogenesis of multiple organ failure (MOF) induced by zymosan.

Design

Male mice with a targeted disruption of the 5-lipoxygenase gene (5-LOKO) and littermate wild-type (WT) controls (5-LOWT) were used to evaluate the role of 5-lipoxygenase (5-LO) in the pathogenesis of MOF.

Setting

University research laboratory.

Interventions and measurements

MOF was induced by peritoneal injection of zymosan (500 mg/kg i.p. as a suspension in saline) in 5-LOWT and in 5-LOKO mice. MOF was assessed 18 h after administration of zymosan and monitored for 12 days (for loss of body weight and mortality).

Results

A severe inflammatory process induced by zymosan administration in WT mice coincided with the damage of lung and small intestine, as assessed by histological examination. Myeloperoxidase activity indicative of neutrophil infiltration and lipid peroxidation were significantly increased in zymosan-treated WT mice. Zymosan in the WT mice also induced a significant increase in the plasma level of nitrite/nitrate. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to ICAM-1 and P-selectin in the lung and intestine of zymosan-treated WT mice. In contrast, the degree of (a) peritoneal inflammation and tissue injury, (b) upregulation/expression of P-selectin and ICAM-1, and (c) neutrophil infiltration were markedly reduced in intestine and lung tissue obtained from zymosan-treated 5-LO deficient mice. Zymosan-treated 5-LOKO showed also a significantly decreased mortality.

Conclusions

These findings clearly demonstrate that 5-LO exerts a role in zymosan-induced nonseptic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    PubMed  Google Scholar 

  2. Baue AE, Durham R, Faist E (1998) Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock 10:79–89

    CAS  PubMed  Google Scholar 

  3. Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29:S99–S106

    Article  CAS  PubMed  Google Scholar 

  4. Deitch EA (2000) Role of the gut lymphatic system in multiple organ failure. Curr Opin Crit Care 7:92–98

    Google Scholar 

  5. Volman TJ, Goris RJ, van der Jagt M, van de Loo FA, Hendriks T (2002) Organ damage in zymosan-induced multiple organ dysfunction syndrome in mice is not mediated by inducible nitric oxide synthase. Crit Care Med 30:1553–1559

    Article  CAS  PubMed  Google Scholar 

  6. Van Bebber IPT, Boekholz KF, Goris RJA, Schillings PHM, Binges HP, Bahrami S, Redl H, Schlag G (1989) Neutrophil function and lipid peroxidation in rat model of multiple organ failure. J Surg Res 47:471–475

    Article  PubMed  Google Scholar 

  7. Petit F, Bagby GJ, Lang CH (1996) Tumour necrosis factor mediates zymosan induced increase in glucose flux and insulin resistance. Am J Physiol 268:E219–E228

    Google Scholar 

  8. Deitch EA, Ma L, Berg RD, Specian RD (1990) Protein malnutrition predisposes to inflammatory-induced gut-origin septic states. Ann Surg 221:560–568

    Google Scholar 

  9. Goris RJA, Van Bebber IPT, Mollen RMH, Koopman JP (1991) Dose selective decontamination of the gastrointestinal tract prevent multiple organ failure? Arch Surg 126:561–565

    CAS  PubMed  Google Scholar 

  10. Mainous MR, Ertel W, Chaudry IH, Deitch EA (1995) The gut: a cytokine-generating organ in systemic inflammation? Shock 4:193–199

    CAS  PubMed  Google Scholar 

  11. Cuzzocrea S, De Sarro GB, Costantino G, Mazzon E, Laurà R, Ciriaco E, De Sarro A, Caputi AP (1999) Role of interleukine-6 in a non-septic shock model induced by zymosan. Eur Cytokine Netw 10:191–203

    CAS  PubMed  Google Scholar 

  12. Cuzzocrea S, Mazzon E, Dugo L, Barbera A, Centorrino T, Ciccolo A, Fonti MT, Caputi AP (2001) Inducible nitric oxide synthase knock out mice exhibit a resistance to multiple organ failure induced by zymosan. Shock 16:51–58

    CAS  Google Scholar 

  13. Devchand PR, Arita M, Hong S, Bannenberg G, Moussignac RL, Gronert K, Serhan CN (2003) Human ALX receptor regulates neutrophil recruitment in transgenic mice: roles in inflammation and host defense. FASEB J 17:652–659

    Article  CAS  PubMed  Google Scholar 

  14. Kolaczkowska E, Shahzidi S, Seljelid R, van Rooijen N, Plytycz B (2002) Early vascular permeability in murine experimental peritonitis is co-mediated by resident peritoneal macrophages and mast cells: crucial involvement of macrophage-derived cysteinyl-leukotrienes. Inflammation 26:61–71

    Article  CAS  PubMed  Google Scholar 

  15. Haribabu B, Verghese MW, Steeber DA, Sellars DD, Bock CB, Snyderman R (2000) Targeted disruption of the leukotriene B (4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. J Exp Med 192:433–438

    Article  CAS  PubMed  Google Scholar 

  16. Dahlen SE (1998) Lipid mediator pathways in the lung: leukotrienes as a new target for the treatment of asthma. Clin Exp Allergy 5:141–146

    Article  Google Scholar 

  17. Goulet JL, Byrum RS, Key ML, Nguyen M, Wagoner VA, Koller BH (2000) Genetic factors determine the contribution of leukotrienes to acute inflammatory responses. J Immunol 164:4899–4907

    CAS  PubMed  Google Scholar 

  18. Byrum RS, Goulet JL, Snouwaert JN, Griffiths RJ, Koller BH (1999) Determination of the contribution of cysteinyl leukotrienes and leukotriene B4 in acute inflammatory responses using 5-lipoxygenase- and leukotriene A4 hydrolase-deficient mice. J Immunol 163:6810–5819

    CAS  PubMed  Google Scholar 

  19. Gardinali M, Borrelli E, Chiara O, Lundberg C, Padalino P, Conciato L, Cafaro C, Lazzi S, Luzi P, Giomarelli PP, Agostoni A (2000) Inhibition of CD11-CD18 complex prevents acute lung injury and reduces mortality after peritonitis in rabbits. Am J Respir Crit Care Med 161:1022–1029

    CAS  PubMed  Google Scholar 

  20. Heller AR, Fiedler F, Braun P, Stehr SN, Bodeker H, Koch T (2003) Clusterin protects the lung from leukocyte-induced injury. Shock 20:166–170

    Article  CAS  PubMed  Google Scholar 

  21. Swartz DE, Seely AJ, Ferri L, Giannias B, Christou NV (2000) Decreased systemic polymorphonuclear neutrophil (PMN) rolling without increased PMN adhesion in peritonitis at remote sites. Arch Surg 135:959–966

    Article  CAS  PubMed  Google Scholar 

  22. Tsujimoto H, Ono S, Mochizuki H, Aosasa S, Majima T, Ueno C, Matsumoto A (2002) Role of macrophage inflammatory protein 2 in acute lung injury in murine peritonitis. J Surg Res 103:61–67

    Article  CAS  PubMed  Google Scholar 

  23. Grutkoski PS, Graeber CT, Ayala A, Simms HH (2002) Paracrine suppression of apoptosis by cytokine-stimulated neutrophils involves divergent regulation of NF-kappaB, Bcl-X (L), and Bak. Shock 2002 17:47–54

    Google Scholar 

  24. Cuzzocrea S, Rossi A, Serraino I, Mazzon E, Di Paola R, Dugo L, Genovese T, Calabro B, Caputi AP, Sautebin L (2003) 5-Lipoxygenase knockout mice exhibit a resistance to pleurisy and lung injury caused by carrageenan. J Leukoc Biol 73:739–746

    Article  CAS  PubMed  Google Scholar 

  25. Baue AE (1993) The multiple organ or system failure syndrome. In: Schlag G, Redl H (eds) Pathophysiology of shock, sepsis, and organ failure. Springer, Berlin Heidelberg New York, pp 1004–1018

  26. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  27. Cuzzocrea S, Filippelli A, Zingarelli B (1997) Role of nitric oxide in a non-septic shock model induced by zymosan in the rat. Shock 351–358

  28. Demling R, Nayak U, Ikegami K (1994) Comparison between lung and liver peroxidation and mortality after zymosan peritonitis in the rats. Shock 2:222–227

    CAS  PubMed  Google Scholar 

  29. Vliet A van der, van der Poel KI, Bast A (1992) Intestinal smooth muscle dysfunction after intraperitoneal injection of zymosan in the rat: are oxygen radicals involved? Gut 33:336–341

    PubMed  Google Scholar 

  30. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135–159

    CAS  PubMed  Google Scholar 

  31. Cuzzocrea S, Rossi A, Serraino I, Di Paola R, Dugo L, Genovese T, Caputi AP,Sautebin L (2003) 5-Lipoxygenaseknock out mice exhibit a resistance to splanchnic artery occlusion (SAO) shock. Shock 20:230–236

    Article  CAS  PubMed  Google Scholar 

  32. Cuzzocrea S, Rossi A, Serraino I, Di Paola R, Dugo L, Genovese T, Britti D, Sciarra G, De Sarro A, Caputi AP,Sautebin L (2003) 5-lipoxygenaseknock out mice exhibit a resistance to the acute pancreatitis induced by cerulein. Immunology 110:120–130

    Article  CAS  PubMed  Google Scholar 

  33. Coffey MJ, Phare SM, Peters-Golden M (2002) Interaction between nitric oxide, reactive oxygen intermediates, and peroxynitrite in the regulation of 5-lipoxygenase metabolism. Biochim Biophys Acta 1584:81–90

    Article  CAS  PubMed  Google Scholar 

  34. Vicente AM, Guillen MI, Alcaraz MJ (2001) Modulation of haem oxygenase-1 expression by nitric oxide and leukotrienes in zymosan-activated macrophages. Br J Pharmacol 133:920–926

    CAS  PubMed  Google Scholar 

  35. Fermor B, Haribabu B, Weinberg JB, Pisetsky DS, Guilak F (2001) Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochem Biophys Res Commun 285:806–810

    Article  CAS  PubMed  Google Scholar 

  36. Tadimeti S. Rao, Jerry L, Currie, Shaffer Peter C, Isakson (1994) In vivo characterization of zymosan-Induced mouse peritoneal inflammation. J Pharmacol Exp Ther 269:917–925

    PubMed  Google Scholar 

  37. Issekutz AC, Issekutz TB (2002) The role of E-selectin, P-selectin, and very late activation antigen-4 in T lymphocyte migration to dermal inflammation. J Immunol 168:1934–1939

    CAS  PubMed  Google Scholar 

  38. Wetheimer SJ, Myers CL, Wallace RW, Parks TP (1992) Intercellular adhesion molecule-1 gene expression in human endothelial cells. J Biol Chem 267:12030–12035

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Giovanni Pergolizzi and Carmelo La Spada for their excellent technical assistance during this study, Mrs. Caterina Cutrona for secretarial assistance, and Miss Valentina Malvagni for editorial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuzzocrea, S., Rossi, A., Serraino, I. et al. Role of 5-lipoxygenase in the multiple organ failure induced by zymosan. Intensive Care Med 30, 1935–1943 (2004). https://doi.org/10.1007/s00134-004-2353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2353-y

Keywords

Navigation