Skip to main content
Log in

Hyperreninemic hypoaldosteronism: a possible etiological factor of septic shock-induced acute renal failure

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Hyperreninemic hypoaldosteronism has been described in critically ill patients. The present study investigated the plasma aldosterone concentration (PAC) in septic shock patients and its relationship with clinical course.

Design and setting

Prospective descriptive study in a medical intensive care unit (ICU) of a university hospital.

Patients

Forty-six consecutive patients with septic shock as defined by the ACCP/SCCM criteria.

Intervention

A corticotropin stimulation test, followed by treatment with low doses of hydrocortisone and fludrocortisone.

Measurements and results

Plasma renin activity, PAC, and cortisol levels were measured before and after the test. PAC measurements were repeated for 1 week. Relevant clinical and laboratory variables were recorded for ICU stay. Patients were divided into two groups according to PAC/renin activity ratio: above 2 (n=24 patients) and below 2 (n=22). Patients with PAC/renin activity less than 2 had higher total volume of infused fluid, serum creatinine level, and fractional excretion of sodium values; aldosterone and serum creatinine were negatively correlated. Hypoaldosteronism was reversible within 1 week. Duration of ICU stay (p=0.0026) and the need for renal replacement therapy (p=0.0021) were greater in the group with PAC/renin less than 2.

Conclusions

Transient hyperreninemic hypoaldosteronism is common in patients with septic shock. These abnormal aldosterone levels are associated with greater sodium and fluid depletion and are followed by enhanced incidence of acute renal failure requiring renal replacement therapy and prolonged length of stay in ICU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Angus DC, Wax RS (2001) Epidemiology of sepsis: an update. Crit Care Med 29:S109–S116

    CAS  PubMed  Google Scholar 

  2. Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, Offenstadt G, Regnier B (1995) Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274:968–974

    CAS  PubMed  Google Scholar 

  3. Brun-Buisson C, Doyon F, Carlet J (1996) Bacteremia and severe sepsis in adults: a multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteremia-Sepsis Study Group. Am J Respir Crit Care Med 154:617–624

    CAS  PubMed  Google Scholar 

  4. Rolih CA, Ober KP (1995) The endocrine response to critical illness. Med Clin North Am 79:211–224

    CAS  PubMed  Google Scholar 

  5. Lamberts SW, Bruining HA, de Jong FH (1997) Corticosteroid therapy in severe illness. N Engl J Med 337:1285–1292

    CAS  PubMed  Google Scholar 

  6. Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E (2000) A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 283:1038–1045

    CAS  PubMed  Google Scholar 

  7. Bonvalet JP (1998) Regulation of sodium transport by steroid hormones. Kidney Int Suppl 65:S49–S56

    CAS  PubMed  Google Scholar 

  8. Zipser RD, Davenport MW, Martin KL, Tuck ML, Warner NE, Swinney RR, Davis CL, Horton R (1981) Hyperreninemic hypoaldosteronism in the critically ill: a new entity. J Clin Endocrinol Metab 53:867–873

    CAS  PubMed  Google Scholar 

  9. Findling JW, Waters VO, Raff H (1987) The dissociation of renin and aldosterone during critical illness. J Clin Endocrinol Metab 64:592–595

    CAS  PubMed  Google Scholar 

  10. Davenport MW, Zipser RD (1983) Association of hypotension with hyperreninemic hypoaldosteronism in the critically ill patient. Arch Intern Med 143:735–737

    CAS  PubMed  Google Scholar 

  11. (1992) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    PubMed  Google Scholar 

  12. Sealey JE (1991) Plasma renin activity and plasma prorenin assays. Clin Chem 37:1811–1819

    CAS  PubMed  Google Scholar 

  13. Raff H, Findling JW (1990) Aldosterone control in critically ill patients: ACTH, metoclopramide, and atrial natriuretic peptide. Crit Care Med 18:915–920

    CAS  PubMed  Google Scholar 

  14. McCabe WR, Jackson GG (1962) Gram negative bacteremia. I. Etiology and ecology. Arch Intern Med 110:847–855

    Google Scholar 

  15. Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963

    PubMed  Google Scholar 

  16. Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ (1995) Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med 23:1638–1652

    PubMed  Google Scholar 

  17. Takagi M, Atarashi K, Matsuoka H, Sugimoto T (1992) A biphasic effect of noradrenaline on renin release from rat juxtaglomerular cells in vitro is mediated by alpha 1- and beta-adrenoceptors. J Endocrinol 132:133–140

    CAS  PubMed  Google Scholar 

  18. Saijonmaa O, Nyman T, Fyhrquist F (2001) Downregulation of angiotensin-converting enzyme by tumor necrosis factor-alpha and interleukin-1beta in cultured human endothelial cells. J Vasc Res 38:370–378

    CAS  PubMed  Google Scholar 

  19. Smallridge RC, Chernow B, Snyder R, Zaloga GP, Burman KD (1985) Angiotensin-converting enzyme activity. A potential marker of tissue hypothyroidism in critical illness. Arch Intern Med 145:1829–1832

    CAS  PubMed  Google Scholar 

  20. Oelkers W (1996) Adrenal insufficiency. N Engl J Med 335:1206–1212

    Google Scholar 

  21. Carey RM, Thorner MO, Ortt EM (1979) Effects of metoclopramide and bromocriptine on the renin-angiotensin-aldosterone system in man. Dopaminergic control of aldosterone. J Clin Invest 63:727–735

    CAS  PubMed  Google Scholar 

  22. Missale C, Lombardi C, De Cotiis R, Memo M, Carruba MO, Spano PF (1989) Dopaminergic receptor mechanisms modulating the renin-angiotensin system and aldosterone secretion: an overview. J Cardiovasc Pharmacol 14 [Suppl 8]:S29–S39

  23. Jong FH de, Mallios C, Jansen C, Scheck PA, Lamberts SW (1984) Etomidate suppresses adrenocortical function by inhibition of 11 beta-hydroxylation. J Clin Endocrinol Metab 59:1143–1147

    PubMed  Google Scholar 

  24. Rydvall A, Brandstrom AK, Banga R, Asplund K, Backlund U, Stegmayr BG (2000) Plasma cortisol is often decreased in patients treated in an intensive care unit. Intensive Care Med 26:545–551

    CAS  PubMed  Google Scholar 

  25. Martin C, Viviand X, Leone M, Thirion X (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28:2758–2765

    Google Scholar 

  26. Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ (1996) Acute renal failure in intensive care units-causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med 24:192–198

    Google Scholar 

  27. Levy EM, Viscoli CM, Horwitz RI (1996) The effect of acute renal failure on mortality. A cohort analysis. JAMA 275:1489–1494

    CAS  PubMed  Google Scholar 

  28. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460

    CAS  PubMed  Google Scholar 

  29. Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troche G, Chaumet-Riffaut P, Bellissant E (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288:862–871

    CAS  PubMed  Google Scholar 

  30. Briegel J, Forst H, Haller M, Schelling G, Kilger E, Kuprat G, Hemmer B, Hummel T, Lenhart A, Heyduck M, Stoll C, Peter K (1999) Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med 27:723–732

    CAS  PubMed  Google Scholar 

  31. Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A (1998) Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 26:645–650

    CAS  PubMed  Google Scholar 

  32. Radomski MW, Palmer RM, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A 87:10043–10047

    CAS  PubMed  Google Scholar 

  33. Saito T, Takanashi M, Gallagher E, Fuse A, Suzaki S, Inagaki O, Yamada K, Ogawa R (1995) Corticosteroid effect on early beta-adrenergic down-regulation during circulatory shock: hemodynamic study and beta-adrenergic receptor assay. Intensive Care Med 21:204–210

    CAS  PubMed  Google Scholar 

  34. Clore J, Schoolwerth A, Watlington CO (1992) When is cortisol a mineralocorticoid? Kidney Int 42:1297–1308

    CAS  PubMed  Google Scholar 

  35. Farman N, Rafestin-Oblin ME (2001) Multiple aspects of mineralocorticoid selectivity. Am J Physiol Renal Physiol 280:F181–F192

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. du Cheyron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Cheyron, D., Lesage, A., Daubin, C. et al. Hyperreninemic hypoaldosteronism: a possible etiological factor of septic shock-induced acute renal failure. Intensive Care Med 29, 1703–1709 (2003). https://doi.org/10.1007/s00134-003-1986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1986-6

Keywords

Navigation