Skip to main content
Log in

Effects of norepinephrine alone and norepinephrine plus dopamine on human intestinal mucosal perfusion

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the effect of norepinephrine alone and norepinephrine combined with dopamine on jejunal mucosal perfusion, gastric-arterial pCO2 gradient, and global splanchnic oxygen demand-supply relationship after cardiac surgery.

Design

A prospective interventional study.

Setting

A university cardiothoracic intensive care unit.

Patients

Eighteen patients were studied during propofol sedation and mechanical ventilation after uncomplicated coronary artery bypass surgery.

Interventions

After control measurements, each patient received norepinephrine (50±26 ng·kg·min) to increase mean arterial blood pressure by 30% followed by addition of low-dose dopamine (2.6±0.3 µg·kg·min). Postdrug control measurements were performed 120 min after discontinuation of the catecholamines.

Measurements and results

Norepinephrine induced a 32% increase in systemic vascular resistance with no change in cardiac index. Neither jejunal mucosal perfusion, assessed by laser Doppler flowmetry, nor gastric-arterial pCO2 gradient (tonometry) was affected by norepinephrine. Splanchnic O2-extraction increased (P<0.05) and this increase was positively correlated to the individual dose of norepinephrine (r = 0.78, P<0.0001). Splanchnic lactate extraction was increased by norepinephrine (P<0.05). None of the patients had splanchnic lactate production during norepinephrine infusion. The addition of dopamine increased cardiac index by 27% (P<0.001) and decreased splanchnic O2 extraction. Dopamine increased jejunal mucosal perfusion by 32% (P<0.001) while the gastric-arterial pCO2 gradient remained unchanged.

Conclusions

Vasopressor therapy with norepinephrine after cardiac surgery did not jeopardize intestinal mucosal perfusion in spite of a dose-dependent increase of the global splanchnic oxygen demand-supply relationship. The addition of dopamine increased intestinal mucosal perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Task Force of the American College of Critical Care Medicine, S.o.C.C.M (1999) Practice parameters for hemodynamic support of sepsis in adult patients in sepsis. Crit Care Med 27:639–660

    PubMed  Google Scholar 

  2. Dunser MW, Mayr AJ, Ulmer H, Ritsch N, Knotzer H, Pajk W, Luckner G, Mutz NJ, Hasibeder WR (2001) The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis. Anesth Analg 93:7–13

    PubMed  Google Scholar 

  3. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    CAS  PubMed  Google Scholar 

  4. Ruokonen E, Takala J, Kari A, Saxen H, Mertsola J, Hansen EJ (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1296–1303

    CAS  PubMed  Google Scholar 

  5. Sakka SG, Meier-Hellmann A, Reinhart K (2000) Do fluid administration and reduction in norepinephrine dose improve global and splanchnic haemodynamics? Br J Anaesth 84:758–762

    Google Scholar 

  6. Meier-Hellmann A, Specht M, Hannemann L, Hassel H, Bredle DL, Reinhart K (1996) Splanchnic blood flow is greater in septic shock treated with norepinephrine than in severe sepsis. Intensive Care Med 22:1354–1359

    CAS  PubMed  Google Scholar 

  7. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25:399–404

    CAS  PubMed  Google Scholar 

  8. Reinelt H, Radermacher P, Kiefer P, Fischer G, Wachter U, Vogt J, Georgieff M (1999) Impact of exogenous beta-adrenergic receptor stimulation on hepatosplanchnic oxygen kinetics and metabolic activity in septic shock. Crit Care Med 27:325–331

    CAS  PubMed  Google Scholar 

  9. Thoren A, Jakob SM, R Pradl R, Elam M, Ricksten SE, Takala J (2000) Jejunal and gastric mucosal perfusion versus splanchnic blood flow and metabolism: an observational study on postcardiac surgical patients. Crit Care Med 28:3649–3654

    CAS  PubMed  Google Scholar 

  10. Cain S (1996) Gut oxygenation after reduced oxygen delivery. Vincent J (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg, pp 219–226

  11. Pastores SM, Katz DP, Kvetan V (1996) Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome. Am J Gastroenterol 91:1697–1710

    CAS  PubMed  Google Scholar 

  12. Thoren A, Elam M, Ricksten SE (2000) Differential effects of dopamine, dopexamine, and dobutamine on jejunal mucosal perfusion early after cardiac surgery. Crit Care Med 28:2338–2343

    CAS  PubMed  Google Scholar 

  13. Thoren A, Elam M, Ricksten SE (2001) Jejunal mucosal perfusion is well maintained during mild hypothermic cardiopulmonary bypass in humans. Anesth Analg 92:5–11

    CAS  PubMed  Google Scholar 

  14. Schwarz B, Hofstotter H, Salak N, Pajk W, Knotzer H, Mayr A, Labeck B, Kafka R, Ulmer H, Hasibeder W (2001) Effects of norepinephrine and phenylephrine on intestinal oxygen supply and mucosal tissue oxygen tension. Intensive Care Med 27:593–601

    CAS  PubMed  Google Scholar 

  15. Sautner T, Wessely C, Riegler M, Sedivy R, Gotzinger P, Losert U, Roth E, Jakesz R, Fugger R (1998) Early effects of catecholamine therapy on mucosal integrity, intestinal blood flow, and oxygen metabolism in porcine endotoxin shock. Ann Surg 228:239–248

    Article  CAS  PubMed  Google Scholar 

  16. Trager K, Radermacher P, Rieger KM, Grover R, Vlatten A, Iber T, Adler J, Georgieff M, Santak B (2000) Norepinephrine and N(G)-monomethyl-L-arginine in hyperdynamic septic shock in pigs: effects on intestinal oxygen exchange and energy balance. Crit Care Med 28:2007–2014

    CAS  PubMed  Google Scholar 

  17. Revelly JP, Liaudet L, Frascarolo P, Joseph JM, Martinet O, Markert M (2000) Effects of norepinephrine on the distribution of intestinal blood flow and tissue adenosine triphosphate content in endotoxic shock. Crit Care Med 28:2500–2506

    Google Scholar 

  18. Crissinger KD, Kvietys PR, Granger DN (1988) Autoregulatory escape from norepinephrine infusion: roles of adenosine and histamine. Am J Physiol 254:G560–565

    CAS  PubMed  Google Scholar 

  19. Guth PH, Ross G, Smith E (1976) Changes in intestinal vascular diameter during norepinephrine vasoconstrictor escape. Am J Physiol 230:1466–1468

    CAS  PubMed  Google Scholar 

  20. Thoren A, Ricksten SE, Lundin S, Gazelius B, Elam M (1998) Baroreceptor-mediated reduction of jejunal mucosal perfusion, evaluated with endoluminal laser Doppler flowmetry in conscious humans. J Auton Nerv Syst 68:157–163

    Article  CAS  PubMed  Google Scholar 

  21. Sjovall H, Redfors S, Biber B, Jodal M, Lundgren O (1984) Effect of intravenous dopamine infusion on intramural blood flow distribution and fluid absorption in the feline small intestine. Scand J Gastroenterol 19:411–416

    CAS  PubMed  Google Scholar 

  22. Kullman T, Breull W, Wasserman K (1983) Blood flow redistribution by dopamine in the feline gastrointestinal tract. Naunyn Schmiedebergs Arch Pharmacol 323:145–148

    PubMed  Google Scholar 

  23. Hasibeder W, Germann R, Wolf HJ, Haisjackl M, Hausdorfer H, Riedmann B, Bonatii J, Gruber E, Schwarz B, Waldenberger P, Friesenecker B, Furtner B (1996) Effects of short-term endotoxemia and dopamine on mucosal oxygenation in porcine jejunum. Am J Physiol 270:G667–675

    CAS  PubMed  Google Scholar 

  24. Germann R, Haisjackl M, Hasibeder W, Sparr H, Luz G, Plattner R, Pernthaler H, Friesenecker B, Falk M (1994) Dopamine and mucosal oxygenation in the porcine jejunum. J Appl Physiol 77:2845–2852

    CAS  PubMed  Google Scholar 

  25. Karzai W, Gunnicker M, Scharbert G, Vorgrimler-Karzai UM, Priebe HJ (1996) Effects of dopamine on oxygen consumption and gastric mucosal blood flow during cardiopulmonary bypass in humans. Br J Anaesth 77:603–606

    CAS  PubMed  Google Scholar 

  26. Karzai W, Lotte A, Gunnicker M, Vorgrimler-Karzai UM, Priebe HJ (1996) Dobutamine increases oxygen consumption during constant flow cardiopulmonary bypass. Br J Anaesth 76:5–8

    CAS  PubMed  Google Scholar 

  27. Neviere R, Mathieu D, Chagnon JL, Lebleu N, Wattel F (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154:1684–1688

    PubMed  Google Scholar 

  28. Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J (1999) The Haldane effect—an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 83:740–746

    Google Scholar 

  29. Arnold J, Hendriks J, Ince C, Bruining H (1994) Tonometry to assess the adequacy of splanchnic oxygenation in the critically ill patient. Intensive Care Med 20:452–456

    CAS  PubMed  Google Scholar 

  30. Russell JA (1997) Gastric tonometry: does it work? Intensive Care Med 23:3–6

    Google Scholar 

  31. Jakob SM, Ruokonen E, Takala J (2002) Effects of dopamine on systemic and regional blood flow and metabolism in septic and cardiac surgery patients. Shock 18:8–13

    PubMed  Google Scholar 

  32. Uusaro A, Russell JA, Walley KR, Takala J (2000) Gastric-arterial PCO2 gradient does not reflect systemic and splanchnic hemodynamics or oxygen transport after cardiac surgery. Shock 14:13–17

    CAS  PubMed  Google Scholar 

  33. Thollander M, Hellstrom PM, Svensson TH, Gazelius B (1996) Haemodynamic changes in the small intestine correlate to migrating motor complex in humans. Eur J Gastroenterol Hepatol 8:777–785

    CAS  PubMed  Google Scholar 

  34. Johansson K, Jakobsson A, Lindahl K, Lindhagen J, Lundgren O, Nilsson GE (1991) Influence of fibre diameter and probe geometry on the measuring depth of laser Doppler flowmetry in the gastrointestinal application. Int J Microcirc Clin Exp. 10:219–229

    Google Scholar 

  35. Bloom W, Fawcett DW (1994) A textbook of histology. Chapman and Hall, New York, pp 617–620

  36. Ahn H, Lindhagen J, Nilsson GE, Oberg PA, Lundgren O (1986) Assessment of blood flow in the small intestine with laser Doppler flowmetry. Scand J Gastroenterol 21:863–870

    CAS  Google Scholar 

  37. Ahn H, Lindhagen J, Nilsson GE, Salerud EG, Jodal M, Lundgren O (1985) Evaluation of laser Doppler flowmetry in the assessment of intestinal blood flow in cat. Gastroenterology 88:951–957

    CAS  PubMed  Google Scholar 

  38. Kvietys PR, Shepherd AP, Granger DN (1985) Laser-Doppler, H2 clearance, and microsphere estimates of mucosal blood flow. Am J Physiol 249:G221–227

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the skilful technical assistance from Mrs. Marita Ahlqvist and we are grateful for the support from the nursing staff of the Cardiothoracic Intensive Care Unit of the Scandinavian Heart Center, Gothenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven-Erik Ricksten.

Additional information

This study was supported by grants from the Swedish Medical Research Council (no. 13156), Medical Faculty of Göteborg (LUA), Scandinavian Heart Center Research Foundations, and Göteborg Medical Society. The study was presented at the Annual Meeting of the European Association of Cardiothoracic Anaesthesiologists May 2002, Dublin, Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygren, A., Thorén, A. & Ricksten, SE. Effects of norepinephrine alone and norepinephrine plus dopamine on human intestinal mucosal perfusion. Intensive Care Med 29, 1322–1328 (2003). https://doi.org/10.1007/s00134-003-1829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1829-5

Keywords

Navigation