Skip to main content
Log in

Früherkennung des Risikos der späteren Implantatlockerung mittels der Röntgen Stereophotogrammetrischen Analyse (RSA)

Early assessment of the risk of later implantloosening using Roentgen Sterophotogrammetric Analysis (RSA)

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Häufigste Ursache für Implantatrevisionen in der Hüft- und Knieendoprothetik ist die aseptische Implantatlockerung. Die Methode der Röntgen Stereophotogrammetrischen Analyse (RSA) repräsentiert den aktuellen Goldstandard zur In-vivo-Beurteilung der Implantatverankerung.

Aktuelle Stand

Klinische Langzeitstudien konnten zeigen, dass eine erhöhte und in den ersten 2 postoperativen Jahren beobachtete stetige Implantatmigration mit einer späteren aseptischen Lockerung stark korreliert. Somit ist die mit der RSA gemessene Implantatmigration als zuverlässiger Surrogatmarker für eine spätere Implantatlockerung zu betrachten. Die RSA hat sich in den letzten 40 Jahren kontinuierlich weiterentwickelt und ist durch den modellbasierten RSA-Ansatz leichter klinisch anzuwenden, da zusätzlich am Implantat angebrachte Messmarker nicht mehr benötigt werden.

Perspektiven

Der RSA-Methode kommt eine steigende Bedeutung in der Zulassung neuer Implantate zu – so wird eine verpflichtende RSA-Studie für neue Hüftimplantate von der Niederländischen Orthopädischen Gesellschaft in der klinischen Prüfung eingefordert. Auch für die im Mai 2017 in Kraft getretene neue EU-Medizinprodukteverordnung (MDR) könnte die RSA für klinisch noch unerprobte Implantate an Relevanz gewinnen. Kritikern, die mit der MDR eine Innovationsbremse assoziieren, kann entgegnet werden, dass mit der RSA-Methode eine prognostizierende Beurteilung der Implantatverankerung bereits nach einem 2‑jährigen Nachuntersuchungszeitraum gegeben werden kann, was deutlich kürzer ist als übliche klinische Langzeitstudien.

Abstract

Background

Aseptic implant loosening is the most common cause of implant revisions in total hip and total knee arthroplasty. Roentgen Stereophotogrammetric Analysis (RSA) represents the current gold standard for the in-vivo assessment of implant fixation.

Present situation

Long-term clinical trials have shown that continuous implant migration within the first two postoperative years correlates strongly with a later aseptic loosening. Thus, the implant migration measured with RSA can be regarded as a reliable surrogate marker for later implant loosening. Over the past 40 years, RSA has been continuously further developed, and the model-based RSA approach has reduced the effort involved since markers attached to implant are no longer needed.

Perspectives

The RSA method is gaining importance in the certification process of new orthopaedic implants—for example, the Dutch Orthopedic Society has recommended phased-introduction and RSA studies for new hip implants. Furthermore, in the context of the new EU Medical Device Regulation (MDR), which took effect in May 2017, RSA gained relevance for investigating clinically unproven implants. Critics who associate MDR with hindering innovation can be countered in that the RSA method provides a predictive assessment of implant fixation after only two years of follow-up, which is significantly shorter than standard long-term clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

CAD:

„Computer-aided design“

EBRA:

Ein-Bild-Röntgenanalyse

EGS:

„Elementary geometrical shapes“

ISO:

Internationale Organisation für Normung

MDR:

Medical Device Regulation

MTPM:

„Maximum total point motion“

NICE:

National Institute for Clinical Excellence

PE:

Polyethylen

PROM:

„Patient related outcome measurements“

RE:

„Reverse engineering“

RSA:

Röntgen Stereophotogrammetrische Analyse

Literatur

  1. Australian Orthopaedic Association National Joint Replacement Registry (2016) Annual report 2016. AOA, Adelaide

    Google Scholar 

  2. Budde S, Seehaus F, Schwarze M et al (2016) Analysis of migration of the Nanos® short-stem hip implant within two years after surgery. Int Orthop 40(8):1607–1614

    PubMed  Google Scholar 

  3. BVMed (2017) Schwerpunkt: EU-Medizinprodukte-Verordnung. MedTech Radar #2/2017

    Google Scholar 

  4. de Bruin PW, Kaptein BL, Stoel BC et al (2008) Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration. J Biomech 41(1):155–164

    PubMed  Google Scholar 

  5. Furnes O, Lie SA, Havelin LI et al (1997) Exeter and charnley arthroplasties with Boneloc or high viscosity cement. Comparison of 1,127 arthroplasties followed for 5 years in the Norwegian Arthroplasty Register. Acta Orthop Scand 68(6):515–520

    CAS  PubMed  Google Scholar 

  6. Gruen TA, McNeice GM, Amstutz HC (1979) ‘Modes of failure’ of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    Google Scholar 

  7. Harris WH, McCarthy JC Jr, O’Neill DA (1982) Femoral component loosening using contemporary techniques of femoral cement fixation. J Bone Joint Surg Am 64:1063–1067

    CAS  PubMed  Google Scholar 

  8. Herberts P, Malchau H (2000) Long-term registration has improved the quality of hip replacement: a review of the Swedish THR Register comparing 160,000 cases. Acta Orthop Scand 71(2):111–121

    CAS  PubMed  Google Scholar 

  9. Hurschler C, Seehaus F, Emmerich J et al (2008) Accuracy of model-based RSA contour reduction in a typical clinical application. Clin Orthop Relat Res 466(8):1978–1986

    PubMed  PubMed Central  Google Scholar 

  10. Hurschler C, Seehaus F, Emmerich J et al (2009) Comparison of the model-based and marker-based roentgen stereophotogrammetry methods in a typical clinical setting. J Arthroplasty 24(4):594–606

    PubMed  Google Scholar 

  11. Ilchmann T, Franzén H, Mjöberg B et al (1992) Measurement accuracy in acetabular cup migration. A comparison of four radiologic methods versus roentgen stereophotogrammetric analysis. J Arthroplasty 7(2):121–127

    CAS  PubMed  Google Scholar 

  12. ISO 16087:2013(E). Implants for surgery – Roentegen stereophotogrammetric analysis for the assessment of migration of orthopaedic implants

  13. Johanson PE, Antonsson M, Shareghi B et al (2016) Early subsidence predicts failure of a cemented femoral stem with minor design changes. Clin Orthop Relat Res 474:2221–2229

    PubMed  PubMed Central  Google Scholar 

  14. Kärrholm J, Borssen B, Lowenhielm G et al (1994) Does early micromotion of femoral stem prostheses matter? 4–7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br 76(6):912–917

    PubMed  Google Scholar 

  15. Kärrholm J, Gill RH, Valstar ER (2006) The history and future of radiostereometric analysis. Clin Orthop Relat Res 448:10–21

    PubMed  Google Scholar 

  16. Kaptein BL, Valstar ER, Stoel BC et al (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36(6):873–882

    CAS  PubMed  Google Scholar 

  17. Kaptein BL, Valstar ER, Spoor CW et al (2006) Model-based RSA of a femoral hip stem using surface and geometrical shape models. Clin Orthop Relat Res 448:92–97

    PubMed  Google Scholar 

  18. Khalily C, Whiteside LA (1998) Predictive value of early radiographic findings in cementless total hip arthroplasty femoral components: an 8‑ to 12-year follow-up. J Arthroplasty 13(7):768–773

    CAS  PubMed  Google Scholar 

  19. Kirschner S, Lützner J (2008) Primäre Endoprothetik am Kniegelenk. Orthopäd Unfallchir Up2date 3:177–194

    Google Scholar 

  20. Krenn V, Perino G, Rüther W et al (2017) 15 years of the histopathological synovitis score, further development and review: a diagnostic score for rheumatology and orthopaedics. Pathol Res Pract 213(8):874–881

    CAS  PubMed  Google Scholar 

  21. Krismer M, Bauer R, Tschupik J et al (1995) EBRA: a method to measure migration of acetabular components. J Biomech 28(10):1225–1236

    CAS  PubMed  Google Scholar 

  22. Lombardi AV, Berend KR, Adams JB (2014) Why knees fail in 2013 – Patient, Surgeon, or Implant? J Bone Joint Surg Br 96(11 Suppl A):101–104

    Google Scholar 

  23. Malak TT, Broomfield JJ, Palmer AJR et al (2016) Surrogate markers of long-term outcome in primary total hip arthroplasty: a systematic review. Bone Joint Res 5:206–214

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Malchau H (1995) On the importance of stepwise introduction of new hip implant technology : assessment of total hip replacement using clinical evaluation, radiostereometry, digitised radiography and a national hip registry. Disserationsschrift. Goteborg University, Goteborg

    Google Scholar 

  25. Malchau H, Kärrholm J, Wang YX et al (1995) Accuracy of migration analysis in hip arthroplasty. Digitized and conventional radiography, compared to radiostereometry in 51 patients. Acta Orthop Scand 66(5):418–424

    CAS  PubMed  Google Scholar 

  26. Malchau H (2000) Introducing new technology: a stepwise algorithm. Spine 25:285

    CAS  PubMed  Google Scholar 

  27. Marmery H, Ostlere S (2007) Imaging of prosthetic joints. Imaging 19:299–309

    Google Scholar 

  28. National Institute for Clinical Excellence (2010) Guidance on the selection of prostheses for primary total hip replacement

    Google Scholar 

  29. Nilsson KG, Dalen T (1998) Inferior performance of Boneloc bone cement in total knee arthroplasty: a prospective randomized study comparing Boneloc with Palacos using radiostereometry (RSA) in 19 patients. Acta Orthop Scand 69(5):479–483

    CAS  PubMed  Google Scholar 

  30. Penny JO, Ding M, Varmarken JE et al (2012) Early micromovement of the articular surface replacement (ASR) femoral component—two-year radiostereometry results. J Bone Joint Surg Br 94(10):1344–1350

    CAS  PubMed  Google Scholar 

  31. Pijls BG, Nieuwenhuijse MJ, Fiocco M et al (2012) Early proximal migration of cups is associated with late revision in THA. Acta Orthop Scand 83:583–591

    Google Scholar 

  32. Pijls BG, Valstar ER, Nouta K‑A et al (2012) Early migration of tibial components is associated with late revision. Acta Orthop Scand 83:614–624

    Google Scholar 

  33. Pijls BG (2014) Evidence based introduction of orthopaedic implants: RSA, implant quality and patient safety. Disserationsschrift. University Medical Center, Leiden

    Google Scholar 

  34. Pijls BG, Plevier JWM, Nelissen RGHH (2018) RSA migration of total knee replacements. Acta Orthop Scand. https://doi.org/10.1080/17453674.2018.1443635

    Article  Google Scholar 

  35. Pivec R, Johnson AJ, Mears SC et al (2012) Hip arthroplasty. Lancet 380:1768–1777

    PubMed  Google Scholar 

  36. Robertsson O, Knutson K, Lewold S et al (2001) The Swedish Knee Arthroplasty Register 1975–1997: an update with special emphasis on 41,223 knees operated on in 1988–1997. Acta Orthop Scand 72(5):503–513

    CAS  PubMed  Google Scholar 

  37. Ryd L, Albrektsson BE, Carlsson L et al (1995) Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg Br 77(3):377–383

    CAS  PubMed  Google Scholar 

  38. Seehaus F, Emmerich J, Kaptein BL et al (2009) Experimental analysis of model-based roentgen stereophotogrammetric analysis (MBRSA) on four typical prosthesis components. J Biomech Eng 131(4):41004

    PubMed  Google Scholar 

  39. Seehaus F, Hurschler C (2011) Die Model-Based RSA Messmethode – Ein Messinstrumentarium zur biomechanischen Beurteilung des in vivo Verhaltens von Endoprothesen. Pabst, Lengerich. ISBN 978-3-89967-718‑8

    Google Scholar 

  40. Seehaus F, Olender G, Kaptein BL et al (2012) Markerless Roentgen Stereophotogrammetric Analysis for in vivo implant migration measurement using three dimensional surface models to represent bone. J Biomech 45(8):1540–1545

    PubMed  Google Scholar 

  41. Seehaus F, Schwarze M, Flörkemeier T et al (2016) The use of single-representative reverse-engineered surface-models for RSA does not affect measurement accuracy and precision. J Orthop Res 34(5):903–910

    CAS  PubMed  Google Scholar 

  42. Sesselmann S, Hong Y, Schlemmer F et al (2017) Migration measurement of the cemented Lubinus SP II hip stem—a 10-year follow-up using radiostereometric analysis. Biomed Tech 62(3):271–278

    Google Scholar 

  43. Sundfeldt M, Carlsson LV, Johansson CB et al (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop Scand 77(2):177–197

    Google Scholar 

  44. Swierstra BA, Vervest AMJS, Walenkamp GHIM et al (2011) Dutch guideline on total hip prosthesis. Acta Orthop 82(5):567–567

    PubMed  PubMed Central  Google Scholar 

  45. Thanner J, Freij-Larsson C, Kärrholm J et al (1995) Evaluation of Boneloc. Chemical and mechanical properties, and a randomized clinical study of 30 total hip arthroplasties. Acta Orthop Scand 66(3):207–214

    CAS  PubMed  Google Scholar 

  46. Valstar ER (2001) Digital roentgen stereophotogrammetry. Disserationsschrift. University Medical Center, Leiden

    Google Scholar 

  47. Valstar ER, Nelissen RG, Reiber JH et al (2002) The use of Roentgen sterophotogrammetry to study micromotion of orthopaedic implants. J Photogramm Remote Sens 56:376–389

    Google Scholar 

  48. Valstar ER, Gill R, Ryd L et al (2005) Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop Scand 76(4):563–572

    Google Scholar 

  49. Valstar ER, Gill HS (2006) Radiostereometric analysis in orthopaedic surgery: editorial comment. Clin Orthop Relat Res 448:2

    PubMed  Google Scholar 

  50. van der Voort P, Pijls BG, Nieuwenhuijse MJ et al (2015) Early subsidence of shape-closed hip arthroplasty stems is associated with late revision. A systematic review and meta-analysis of 24 RSA studies and 56 survival studies. Acta Orthop Scand 86:575–585

    Google Scholar 

  51. Wierer T, Forst R, Mueller LA et al (2013) Radiostereometric migration analysis of the Lubinus SP II hip stem: 59 hips followed for 2 years. Biomed Tech 58(4):333–341

    Google Scholar 

Download references

Danksagung

Die vorliegende Arbeit ist aus dem Clusters Implantatverankerung und -sicherheit des MSB-Net (Netzwerk Muskuloskelettale Biomechanik der Sektion Grundlagenforschung der Deutschen Gesellschaft für Orthopädie und Unfallchirurgie) entstanden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Seehaus.

Ethics declarations

Interessenkonflikt

F. Seehaus, R. Sonntag, M. Schwarze, E. Jakubowitz, S. Sesselmann, J.P. Kretzer und C. Hurschler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seehaus, F., Sonntag, R., Schwarze, M. et al. Früherkennung des Risikos der späteren Implantatlockerung mittels der Röntgen Stereophotogrammetrischen Analyse (RSA). Orthopäde 49, 1042–1048 (2020). https://doi.org/10.1007/s00132-020-04027-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-020-04027-y

Schlüsselwörter

Keywords

Navigation