Skip to main content

Advertisement

Log in

Big Data und maschinelles Lernen bei Prävention und Rehabilitation

Big data and deep learning in preventive and rehabilitation medicine

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die Digitalisierung der Medizin hat zur Beschleunigung der Abläufe und nahezu universellen Verfügbarkeit von Informationen geführt. Verkürzte stationäre Verweildauern erfordern nun auch intelligente und praxistaugliche Systeme in der Rehabilitation und Prävention. Hierzu gehören u. a. die Optimierung von Bewegungsanalysen durch innovative Techniken, z. B. Detektoren mit Druckmessfolien, portable Monitorsysteme, robotergestützte Assistenzsysteme sowie professionelle Präventionsprogramme, die auf reliablen Daten beruhen. Nicht zuletzt bedarf es allerdings auch klinischer Strukturen, um die Möglichkeiten künstlicher Intelligenz (AI) und maschinellen Lernens in der Rehabilitation optimal zu nutzen. Einen Beitrag hierzu können inter- und transdisziplinäre Behandlungsteams wie z. B. das RehaBoard liefern. Durch die zunehmende Einführung von AI in der rehabilitativen Orthopädie und Unfallchirurgie mit der Unterstützung sektorenübergreifender Behandlungspfade hat diese im Gegensatz zu anderen kostenintensiven Bereichen wie beispielsweise der Onkologie, sehr gute Chancen, bei einem Wettbewerb um den größten Patientennutzen („value-based competition“) vergleichsweise gut abzuschneiden.

Abstract

The digitalization in medicine has led to almost universal availability of information to different healthcare professionals and accelerated clinical pathways. Fast-track concepts and short hospital stays require intelligent and practicable systems in preventive and rehabilitation medicine. This includes optimization of movement analysis by innovative tools such as detectors sensing skin movements, portable feedback systems for monitoring, robot-assisted devices, and prevention programs based on reliable data. Finally, clinical structures are needed to exploit the maximal potential of artificial intelligence (AI) and deep learning. One example is the establishment of inter- and transdisciplinary professional teams such as a RehaBoard. In contrast to other cost-intensive disciplines such as oncology, the introduction of AI into rehabilitation orthopedics and trauma surgery with the support of cross-sectoral cooperation has great potential for performing well in patient benefit-orientated competition (value-based competition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

AI:

„Artificial intelligence“

DL:

„Deep learning“

FIFA:

Fédération Internationale de Football Association

RAGT:

„Robot-assisted gait training“

SGB:

Sozialgesetzbuch

VKB:

Vorderes Kreuzband

Literatur

  1. Abrams GD, Harris JD, Gupta AK et al (2014) Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med 2:2325967113518305

    PubMed  PubMed Central  Google Scholar 

  2. Alentorn-Geli E, Myer GD, Silvers HJ et al (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17:705–729

    Article  Google Scholar 

  3. Ardern CL, Webster KE, Taylor NF et al (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45:596–606

    Article  Google Scholar 

  4. Augurzky B, Hentschker C, Pilny A, Wübker A (2017) Barmer Krankenhausreport 2017. Schriftenreihe zur Gesundheitsanalyse. Asgard-Verlagsservice GmbH, Siegburg

    Google Scholar 

  5. Bere T, Florenes TW, Krosshaug T et al (2011) Mechanisms of anterior cruciate ligament injury in World Cup alpine skiing: a systematic video analysis of 20 cases. Am J Sports Med 39:1421–1429

    Article  Google Scholar 

  6. Bufe NH, Heinemann A, Köhler P, Kecskeméthy A (2016) An approach for bone pose estimation via three external ellipsoid pressure points. 15th Conference on Advances in Robot Kinematics (ARK). Springer, Grasse, S 265–273

    Google Scholar 

  7. Bufe NK, Kecskemethy A (2015) Position analysis of a planar rigid-body tracked by three ellipse pressure points along straight lines. 14th World Congress in Mechanism and Machine Science, Taipei

    Google Scholar 

  8. Bufe NK, Kuntze G, Ronsky JL, Kecskeméthy A (2018) Fluoroscopy validation of noninvasive 3D Bone-posetracking via external pressure-foils. 16th Conference on Advances in Robot Kinematics (ARK), Bologna

    Google Scholar 

  9. Choi H, Seo K, Hyung S et al (2018) Compact hip-force sensor for a gait-assistance exoskeleton system. Sensors (Basel) 18(2):566. https://doi.org/10.3390/s18020566

    Article  Google Scholar 

  10. Cipriani C, Zaccone F, Micera S, Carrozza MC (2008) On the shared control of an EMG-controlled prosthetic hand: analysis of user–prosthesis interaction. IEEE Trans Robot 24:170–184

    Article  Google Scholar 

  11. Escalona MJ, Brosseau R, Vermette M et al (2018) Cardiorespiratory demand and rate of perceived exertion during overground walking with a robotic exoskeleton in long-term manual wheelchair users with chronic spinal cord injury: a cross-sectional study. Ann Phys Rehabil Med 61(4):215–223. https://doi.org/10.1016/j.rehab.2017.12.008

    Article  PubMed  Google Scholar 

  12. Hayes SC, Wilcox JCR, Forbes White HS et al (2018) The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: a systematic review. J Spinal Cord Med 5:1–15. https://doi.org/10.1080/10790268.2018.1426236

    Article  Google Scholar 

  13. Herbst E, Hoser C, Hildebrandt C et al (2015) Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part II: clinical application of a new test battery. Knee Surg Sports Traumatol Arthrosc 23:1283–1291

    Article  CAS  Google Scholar 

  14. Hildebrandt C, Muller L, Zisch B et al (2015) Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part I: development of a new test battery. Knee Surg Sports Traumatol Arthrosc 23:1273–1281

    Article  Google Scholar 

  15. Ialenti MN, Mulvihill JD, Feinstein M et al (2017) Return to play following shoulder stabilization: a systematic review and meta-analysis. Orthop J Sports Med 5:2325967117726055

    PubMed  PubMed Central  Google Scholar 

  16. Jäger M, Wagener J, Rühlemann A, Siebler M, Hefter H, Zietz D, Raab D, Geu Flores F, Gegenbauer S, Kecskeméthy A (2018) RehaBoardX—machine learning as an innovative tool for neurological and orthopaedic rehabilitation. 19th EFORT Congress, Barcelona

    Google Scholar 

  17. Kecskeméthy A (2010) Non-invasive sensor for the examination of the human or animal locomotor system. In: Lenarcic J, Parenti-Castelli V (Hrsg) Advances in robot kinematics 2018. Springer, Cham

  18. Kecskeméthy A, Liu H, Nguyen DH, Parzer H, Gattringer H (2015) An approach to determine a human joint axis using force-controlled motion and the power interation method. 14th World Congress in Mechanism and Machine Science, Taipei

    Google Scholar 

  19. Laboute E, Savalli L, Puig P et al (2010) Analysis of return to competition and repeat rupture for 298 anterior cruciate ligament reconstructions with patellar or hamstring tendon autograft in sportspeople. Ann Phys Rehabil Med 53:598–614

    Article  CAS  Google Scholar 

  20. Lerant BR, Raab D, Hefter H, Fremersdorf C, Moll M, Kecskeméthy A, Siebler M (2014) Entwicklung eines neuen Schlaganfallbewegungsscores (ReHabX-Score). Neurol Rehabil 6:308

    Google Scholar 

  21. Li Y, Hashimoto M (2016) Design and prototyping of a novel lightweight walking assist wear using PVC gel soft actuators. Sens Actuators A Phys 239:26–44

    Article  CAS  Google Scholar 

  22. Liu H, Kecskemethy A, Huang T (2017) An automatic approach for identification of natural reciprocal screw systems of serial kinematic chains based on the invariance properties matrix. Mech Mach Theory 107:352–368. https://doi.org/10.1016/j.mechmachtheory.2016.08.002

    Article  Google Scholar 

  23. Mandelbaum BR, Silvers HJ, Watanabe DS et al (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2‑year follow-up. Am J Sports Med 33:1003–1010

    Article  Google Scholar 

  24. Mehl J, Diermeier T, Herbst E et al (2018) Evidence-based concepts for prevention of knee and ACL injuries. 2017 guidelines of the ligament committee of the German Knee Society (DKG). Arch Orthop Trauma Surg 138:51–61

    Article  Google Scholar 

  25. Murai A, Kurosaki K, Yamane K, Nakamura Y (2010) Musculoskeletal-see-through mirror: computational modeling and algorithm for whole-body muscle activity visualization in real time. Prog Biophys Mol Biol 103:310–317

    Article  Google Scholar 

  26. Myer GD, Schmitt LC, Brent JL et al (2011) Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther 41:377–387

    Article  Google Scholar 

  27. Myklebust G, Holm I, Maehlum S et al (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury: a follow-up study. Am J Sports Med 31:981–989

    Article  Google Scholar 

  28. Nagelli CV, Hewett TE (2017) Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med 47:221–232

    Article  Google Scholar 

  29. Neeter C, Gustavsson A, Thomee P et al (2006) Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction. Knee Surg Sports Traumatol Arthrosc 14:571–580

    Article  Google Scholar 

  30. Petersen W, Fink C, Kopf S (2017) Return to sports after ACL reconstruction: a paradigm shift from time to function. Knee Surg Sports Traumatol Arthrosc 25:1353–1355

    Article  Google Scholar 

  31. Pietschmann J, Jöllenbeck T, Geu Flores F (2017) Gangtraining mit Sonifikation zur Wiederherstellung des normalen Ganges nach endoprothetischem Gelenkersatz. 23. Sportwissenschaftlicher Hochschultag der Deutschen Vereinigung für Sportwissenschaft. dvs, München, S 65

    Google Scholar 

  32. Sadigursky D, Braid JA, De Lira DNL et al (2017) The FIFA 11+ injury prevention program for soccer players: a systematic review. Bmc Sports Sci Med Rehabil 9:18

    Article  Google Scholar 

  33. Schmidt K, Riener R (2016) MAXX: mobility assisting teXtile eXoskeleton that exploits neural control synergies. In: Ibáñez J, Gonzalez-Vargas J, Azorín JM, Akay M, Pons JL (Hrsg) Converging clinical and engineering research on neurorehabilitation II. Segovia, Spain, S 539–543

    Google Scholar 

  34. Tefertiller C, Hays K, Jones J et al (2018) Initial outcomes from a multicenter study utilizing the Indego powered exoskeleton in spinal cord injury. Top Spinal Cord Inj Rehabil 24:78–85

    Article  Google Scholar 

  35. Verhagen EA, Van Stralen MM, Van Mechelen W (2010) Behaviour, the key factor for sports injury prevention. Sports Med 40:899–906

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jäger.

Ethics declarations

Interessenkonflikt

M. Jäger, C. Mayer, H. Hefter, M. Siebler und A. Kecskeméthy geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jäger, M., Mayer, C., Hefter, H. et al. Big Data und maschinelles Lernen bei Prävention und Rehabilitation. Orthopäde 47, 826–833 (2018). https://doi.org/10.1007/s00132-018-3603-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-018-3603-y

Schlüsselwörter

Keywords

Navigation