Skip to main content
Log in

Strahlenfreie Diagnostik bei Skoliosen

Ein Überblick über die Oberflächen- und Wirbelsäulentopographie

Radiation-free diagnosis of scoliosis

An overview of the surface and spine topography

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Skoliosen sind komplexe dreidimensionale Deformitäten der Wirbelsäule, die häufig im Kindes- und Jugendalter auftreten. Bis heute stellen Wirbelsäulenganzaufnahmen den therapeutischen Goldstandard in der Diagnose und Verlaufskontrolle von Skoliosen dar. Aufgrund der hiermit verbundenen Strahlenbelastung wurde bereits früh nach alternativen Messmethoden gesucht.

Ziel

Ein Überblick über die Geschichte, den technischen Hintergrund sowie über die Einsatzmöglichkeiten der Videorasterstereographie wird präsentiert.

Methode

Das rasterstereographische System Formetric (Diers International GmbH, Schlagenbad, Deutschland) ermöglicht die dreidimensionale und strahlungsfreie Darstellung der Rückenoberfläche und der darunterliegenden Wirbelsäule.

Ausblick

Durch technische Weiterentwicklungen kann diese Technik auch unter dynamischen Bedingungen eingesetzt werden, wodurch sich in der Zukunft zusätzliche Einsatzmöglichkeiten ergeben.

Abstract

Background

Scoliosis is a complex three-dimensional deformity of the spine, which usually occurs during childhood and adolescence. Up to now, whole spine X-rays have been the therapeutic gold standard in the diagnosis and follow-up of scoliosis.

Aim

This review gives a brief overview of the history, technical background and possible fields of use for video-rasterstereography

Methods

Alternative measurement systems have been developed over the past few years for the treatment of scoliosis, because of the risk of radiation exposure of X-rays. The rasterstereographic system Formetric (Diers International GmbH, Schlagenbad) allows a radiation-free, three-dimensional analysis of the back surface and the spine.

Outlook

Even dynamic measurements can now be conducted with this rasterstereographic system, which will help to further understand and analyze the human spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Amendt LE, Ause-Ellias KL, Eybers JL et al (1990) Validity and reliability testing of the Scoliometer. Phys Ther 70:108–117

    CAS  PubMed  Google Scholar 

  2. Berryman F, Pynsent P, Fairbank J et al (2008) A new system for measuring three-dimensional back shape in scoliosis. Eur Spine J 17:663–672

    Article  PubMed Central  PubMed  Google Scholar 

  3. Betsch M, Rapp W, Przibylla A et al (2013) Determination of the amount of leg length inequality that alters spinal posture in healthy subjects using rasterstereography. Eur Spine J 22(1):1354–1361

    Article  PubMed Central  PubMed  Google Scholar 

  4. Betsch M, Schneppendahl J, Dor L et al (2011) Influence of foot positions on the spine and pelvis. Arthritis Care Res (Hoboken) 63:1758–1765

    Article  Google Scholar 

  5. Betsch M, Wehrle R, Dor L et al (2015) Spinal posture and pelvic position during pregnancy: a prospective rasterstereographic pilot study. Eur Spine J 24:1282–1288

    Article  PubMed  Google Scholar 

  6. Betsch M, Wild M, Grosse B et al (2012) The effect of simulating leg length inequality on spinal posture and pelvic position: a dynamic rasterstereographic analysis. Eur Spine J 21(4):691–697

    Article  PubMed Central  PubMed  Google Scholar 

  7. Betsch M, Wild M, Johnstone B et al (2013) Evaluation of a novel spine and surface topography system for dynamic spinal curvature analysis during gait. PLoS One 8:e70581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Betsch M, Wild M, Jungbluth P et al (2008) Reliability and validity of 4D rasterstereography under dynamic conditions. Comput Biol Med 41:308–312

    Article  Google Scholar 

  9. Betsch M, Wild M, Jungbluth P et al (2010) The rasterstereographic-dynamic analysis of posture in adolescents using a modified Matthiass test. Eur Spine J 19:1735–1739

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bunnell WP (1984) An objective criterion for scoliosis screening. J Bone Joint Surg Am 66:1381–1387

    CAS  PubMed  Google Scholar 

  11. Doody MM, Lonstein JE, Stovall M et al (2000) Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 25:2052–2063

    Article  CAS  Google Scholar 

  12. Drerup B (1985) Improvements in measuring vertebral rotation from the projections of the pedicles. J Biomech 18:369–378

    Article  CAS  PubMed  Google Scholar 

  13. Drerup B, Hierholzer E (1996) Assessment of scoliotic deformity from back shape asymmetry using an improved mathematical model. Clin Biomech (Bristol, Avon) 11:376–383

    Article  Google Scholar 

  14. Drerup B, Hierholzer E (1987) Automatic localization of anatomical landmarks on the back surface and construction of a body-fixed coordinate system. J Biomech 20:961–970

    Article  CAS  PubMed  Google Scholar 

  15. Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines–Part I. Measurement of position and orientation of vertebrae and assessment of clinical shape parameters. J Biomech 25:1357–1362

    Article  CAS  PubMed  Google Scholar 

  16. Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines–Part II. Relations between lateral deviation, lateral tilt and axial rotation of vertebrae. J Biomech 25:1443–1450

    Article  CAS  PubMed  Google Scholar 

  17. Drerup B, Hierholzer E (1987) Movement of the human pelvis and displacement of related anatomical landmarks on the body surface. J Biomech 20:971–977

    Article  CAS  PubMed  Google Scholar 

  18. Drerup B, Hierholzer E (1994) Back shape measurement using video rasterstereography and three-dimensional reconstruction of spinal shape. Clin Biomech (Bristol, Avon) 9:28–36

    Article  CAS  Google Scholar 

  19. Fortin D, Cheriet F, Beausejour M et al (2007) A 3D visualization tool for the design and customization of spinal braces. Comput Med Imaging Graph 31:614–624

    Article  CAS  PubMed  Google Scholar 

  20. Frerich JM, Hertzler K, Knott P et al (2012) Comparison of radiographic and surface topography measurements in adolescents with idiopathic scoliosis. Open Orthop J 6:261–265

    Article  PubMed Central  PubMed  Google Scholar 

  21. Grivas TB, Vasiliadis ES, Polyzois VD et al (2006) Trunk asymmetry and handedness in 8245 school children. Pediatr Rehabil 9:259–266

    PubMed  Google Scholar 

  22. Hackenberg L, Hierholzer E (2002) 3-D back surface analysis of severe idiopathic scoliosis by rasterstereography: comparison of rasterstereographic and digitized radiometric data. Stud Health Technol Inform 88:86–89

    CAS  PubMed  Google Scholar 

  23. Hackenberg L, Hierholzer E, Bullmann V et al (2006) Rasterstereographic analysis of axial back surface rotation in standing versus forward bending posture in idiopathic scoliosis. Eur Spine J 15:1144–1149

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hackenberg L, Hierholzer E, Liljenqvist U (2002) Accuracy of rasterstereography versus radiography in idiopathic scoliosis after anterior correction and fusion. Stud Health Technol Inform 91:241–245

    PubMed  Google Scholar 

  25. Hackenberg L, Hierholzer E, Potzl W et al (2003) Rasterstereographic back shape analysis in idiopathic scoliosis after posterior correction and fusion. Clin Biomech (Bristol, Avon) 18:883–889

    Article  Google Scholar 

  26. He JW, Yan ZH, Liu J et al (2009) Accuracy and repeatability of a new method for measuring scoliosis curvature. Spine (Phila Pa 1976) 34:E323–E329

    Google Scholar 

  27. Hierholzer E, Hackenberg L (2002) Three-dimensional shape analysis of the scoliotic spine using MR tomography and rasterstereography. Stud Health Technol Inform 91:184–189

    PubMed  Google Scholar 

  28. Knott P, Mardjetko S, Tager D, Hund R, Thompson S (2012) The influence of body mass index (BMI) on the reproducibility of surface topography measurements. Scoliosis 7(Suppl 1):O18

    Article  PubMed Central  Google Scholar 

  29. Krause M, Breer S, Mohrmann B et al (2013) Influence of non-traumatic thoracic and lumbar vertebral fractures on sagittal spine alignment assessed by radiation-free spinometry. Osteoporos Int 24:1859–1868

    Article  CAS  PubMed  Google Scholar 

  30. Liljenqvist U, Halm H, Hierholzer E et al (1998) [3-dimensional surface measurement of spinal deformities with video rasterstereography]. Z Orthop Ihre Grenzgeb 136:57–64

    Article  CAS  PubMed  Google Scholar 

  31. Mangone M, Raimondi P, Paoloni M et al (2013) Vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: correlation between the Raimondi method and rasterstereography. Eur Spine J 22:367–371

    Article  PubMed Central  PubMed  Google Scholar 

  32. Meadows DM, Johnson WO, Allen JB (1970) Generation of surface contours by moire patterns. Appl Opt 9:942–947

    Article  CAS  PubMed  Google Scholar 

  33. Murrell GA, Coonrad RW, Moorman CT 3rd et al (1993) An assessment of the reliability of the Scoliometer. Spine (Phila Pa 1976) 18:709–712

    Article  CAS  Google Scholar 

  34. Papadopoulos D (2012) Is the surface topography a helpful tool for the management of scoliosis? Scoliosis 7(Suppl 1):O17

    Article  PubMed Central  Google Scholar 

  35. Pazos V, Cheriet F, Danserau J et al (2007) Reliability of trunk shape measurements based on 3-D surface reconstructions. Eur Spine J 16:1882–1891

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ronckers CM, Land CE, Miller JS et al (2010) Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res 174:83–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Schulein S, Mendoza S, Malzkorn R et al (2013) Rasterstereographic evaluation of interobserver and intraobserver reliability in postsurgical adolescent idiopathic scoliosis patients. J Spinal Disord Tech 26:E143–149

    Article  PubMed  Google Scholar 

  38. Schulte TL, Hierholzer E, Boerke A et al (2008) Raster stereography versus radiography in the long-term follow-up of idiopathic scoliosis. J Spinal Disord Tech 21:23–28

    Article  PubMed  Google Scholar 

  39. Seoud L, Cheriet F, Labelle H et al (2009) A novel method for the 3-D reconstruction of scoliotic ribs from frontal and lateral radiographs. IEEE Trans Biomed Eng 58:1135–1146

    Article  PubMed  Google Scholar 

  40. Stirling AJ, Howel D, Millner PA et al (1996) Late-onset idiopathic scoliosis in children six to fourteen years old. A cross-sectional prevalence study. J Bone Joint Surg Am 78:1330–1336

    CAS  PubMed  Google Scholar 

  41. Takasaki H (1970) Moire topography. Appl Opt 9:1467–1472

    Article  CAS  PubMed  Google Scholar 

  42. Turner-Smith AR, Harris JD, Houghton GR et al (1988) A method for analysis of back shape in scoliosis. J Biomech 21:497–509

    Article  CAS  PubMed  Google Scholar 

  43. Weiss HR (2001) Adolescent idiopathic scoliosis: the effect of brace treatment on the incidence of surgery. Spine (Phila Pa 1976) 26:2058–2059

    Article  CAS  Google Scholar 

  44. Zubovic A, Davies N, Berryman F et al (2008) New method of Scoliosis Deformity Assessment: ISIS 2 System. Stud Health Technol Inform 140:157–160

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Betsch.

Ethics declarations

Interessenkonflikt

M. Betsch, M. Wild, B. Rath, M. Tingart, A. Schulze und V. Quack geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betsch, M., Wild, M., Rath, B. et al. Strahlenfreie Diagnostik bei Skoliosen. Orthopäde 44, 845–851 (2015). https://doi.org/10.1007/s00132-015-3175-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-015-3175-z

Schlüsselwörter

Keywords

Navigation