Skip to main content

Advertisement

Log in

Intervertebrale Cages aus biomechanischer Sicht

Intervertebral cages from a biomechanical point of view

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bei Fusionen eines Bewegungssegments im Bereich der lumbalen Wirbelsäule gibt es mehrere Möglichkeiten der Instrumentierung des betroffenen Segments. Intervertebrale Cages werden hierbei in den Zwischenwirbelraum als Platzhalter implantiert, um die Bandscheibenhöhe wieder herzustellen und das Segment unter Zuhilfenahme des Zuggurtungseffekts der ligamentären Strukturen zu stabilisieren.

Material und Methode

Basierend auf einer selektiven Literaturrecherche mit dem Schwerpunkt auf biomechanische Aspekte zu intervertebralen Cages werden experimentelle und klinische Studien und Reviews dargestellt, interpretiert und diskutiert.

Ergebnisse

„Stand-alone-Cages“ ohne supplementäre Instrumentierungen zeigen in biomechanischen Flexibilitätsuntersuchungen, insbesondere in Extension und axialer Rotation, einen geringen Stabilisierungseffekt sowie einen erhöhten Kraftfluss durch die ventralen Strukturen. Mit einer additiven dorsalen Instrumentierung kann der Kraftfluss über das Segment wieder der physiologischen Wirbelsäule angenähert werden, und die Primärstabilität wird in allen Bewegungsrichtungen deutlich erhöht. Im Vergleich zur bilateralen dorsalen Instrumentierung zeigt eine unilaterale Instrumentierung eine verminderte Primärstabilität und kann durch die asymmetrische Belastung des Cages zu einem einseitigen Korrekturverlust führen. Nichtmetallische Implantatmaterialien mit einer an den Knochen angepassten Steifigkeit haben theoretisch eine geringere Tendenz zum Einsinken und erleichtern die radiologische Beurteilung der angestrebten knöchernen Durchbauung des Bandscheibenfaches aufgrund der geringeren Artefaktbildung.

Schlussfolgerungen

In Kombination mit einer bilateralen dorsalen Instrumentierung mit einem Fixateur interne ist dieser vorrangig für die Primärstabilität eines zu fusionierendem Segments verantwortlich und die Geometrie und das Material des Cages sind nachrangig.

Abstract

Background

If lumbar interbody fusion is indicated, there are several options for instrumentation of the affected motion segment. Intervertebral cages are implanted in the disc to restore disc height and to stabilize the motion segment by tensioning the ligamentous structures.

Methods

Based on a selective literature search with the focus on biomechanical aspects of intervertebral cages, experimental and clinical studies are shown, interpreted, and discussed.

Results

In the literature, biomechanical flexibility tests of “stand alone” cages without supplemental instrumentation showed a limited stabilizing effect, particularly in extension and axial rotation, as well as an increased load transfer through the ventral column. Applying supplemental dorsal instrumentation can return the ventral/dorsal load sharing to the range of an intact motion segment and causes a marked increase of stability in all motion planes. Compared to bilateral dorsal instrumentation, unilateral dorsal instrumentation showed a reduced primary stability and leads to an asymmetrical loading of the cage which can cause unilateral loss of reduction. Nonmetallic cages with a stiffness adapted to bone allow better radiological evaluation of the bony fusion of the motion segment and theoretically have a reduced tendency to migrate.

Conclusion

In combination with bilateral dorsal instrumentation, cage geometry and material have only a minor influence on primary stability and the main stability is provided by the internal fixator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Evans JH (1985) Biomechanics of lumbar fusion. Clin Orthop Relat Res 193:38–46

  2. Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE 3rd, Laun J, Vrionis FD (2014) In vitro evaluation of a lateral expandable cage and its comparison with a static device for lumbar interbody fusion: a biomechanical investigation. J Neurosurg Spine 20:387–395. doi:10.3171/2013.12.SPINE13798

    Article  PubMed  Google Scholar 

  3. Bhatia NN, Lee KH, Bui CN, Luna M, Wahba GM, Lee TQ (2012) Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion. Spine 37:E79–E85. doi:10.1097/BRS.0b013e3182226ba6

    Article  Google Scholar 

  4. Pekmezci M, Tang JA, Cheng L, Modak A, McClellan RT, Buckley JM, Ames CP (2012) Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model, part I: endplate force characteristics. J Neurosurg Spine 17:321–326. doi:10.3171/2012.7.SPINE12171

    Article  PubMed  Google Scholar 

  5. Pimenta L, Turner AW, Dooley ZA, Parikh RD, Peterson MD (2012) Biomechanics of lateral interbody spacers: going wider for going stiffer. Scientific World J 2012:381814. doi:10.1100/2012/381814

    Article  Google Scholar 

  6. Tsitsopoulos PP, Serhan H, Voronov LI, Carandang G, Havey RM, Ghanayem AJ, Patwardhan AG (2012) Would an anatomically shaped lumbar interbody cage provide better stability? an in vitro cadaveric biomechanical evaluation. J Spinal Disord Tech 25:E240–E244. doi:10.1097/BSD.0b013e31824c820c

    Article  Google Scholar 

  7. Hueng DY, Chung TT, Chuang WH, Hsu CP, Chou KN, Lin SC (2014) Biomechanical effects of cage positions and facet fixation on initial stability of the anterior lumbar interbody fusion motion segment. Spine 39:E770–E776. doi:10.1097/BRS.0000000000000336

    Article  Google Scholar 

  8. Keiler A, Schmoelz W, Erhart S, Gnanalingham K (2014) Primary stiffness of a modified transforaminal lumbar interbody fusion cage with integrated screw fixation: cadaveric biomechanical study. Spine 39:E994–E1000. doi:10.1097/brs.0000000000000422

    Article  PubMed  Google Scholar 

  9. Kettler A, Schmoelz W, Kast E, Gottwald M, Claes L, Wilke HJ (2005) In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages. Spine 30:E665–E670

    Article  Google Scholar 

  10. Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80:351–359

    Article  CAS  PubMed  Google Scholar 

  11. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg 6:81–89. doi:10.1111/os.12098

    Article  PubMed  Google Scholar 

  12. Vadapalli S, Robon M, Biyani A, Sairyo K, Khandha A, Goel VK (2006) Effect of lumbar interbody cage geometry on construct stability: a cadaveric study. Spine 31:2189–2194. doi:10.1097/01.brs.0000232720.23748.ce

    Article  PubMed  Google Scholar 

  13. Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F (2005) A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine 30:2631–2636

    Article  PubMed  Google Scholar 

  14. Kornblum MB, Turner AW, Cornwall GB, Zatushevsky MA, Phillips FM (2013) Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws. Spine J 13:77–84. doi:10.1016/j.spinee.2012.11.013

    Article  PubMed  Google Scholar 

  15. Vieweg U, Liner M, Luhn M, Neurauter A, Blauth M, Schmoelz W (2008) Biomechanical study of a ventral stand-alone cage for the lumbar spine with and without additional posterior fixation. Der Orthopade 37:587–591. doi:10.1007/s00132-008-1264-y

    Article  CAS  PubMed  Google Scholar 

  16. Chin KR, Reis MT, Reyes PM, Newcomb AG, Neagoe A, Gabriel JP, Sung RD, Crawford NR (2013) Stability of transforaminal lumbar interbody fusion in the setting of retained facets and posterior fixation using transfacet or standard pedicle screws. Spine J. doi:10.1016/j.spinee.2013.06.103. [Epub ahead of print]

  17. Kettler A, Wilke HJ, Dietl R, Krammer M, Lumenta C, Claes L (2000) Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92:87–92

    CAS  PubMed  Google Scholar 

  18. Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):95–101

    Article  Google Scholar 

  19. Slucky AV, Brodke DS, Bachus KN, Droge JA, Braun JT (2006) Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Spine J 6:78–85. doi:10.1016/j.spinee.2005.08.003

    Article  PubMed  Google Scholar 

  20. Buttermann GR, Beaubien BP, Freeman AL, Stoll JE, Chappuis JL (2009) Interbody device endplate engagement effects on motion segment biomechanics. Spine J 9:564–573. doi:10.1016/j.spinee.2009.03.014

    Article  PubMed  Google Scholar 

  21. Fogel GR, Parikh RD, Ryu SI, Turner AW (2014) Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation: laboratory investigation. J Neurosurg Spine 20:291–297. doi:10.3171/2013.11.spine13617

    Article  PubMed  Google Scholar 

  22. Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S, Albert TJ (2004) Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine 29:E65–E70

    Article  Google Scholar 

  23. Kandziora F, Schleicher P, Scholz M, Pflugmacher R, Eindorf T, Haas NP, Pavlov PW (2005) Biomechanical testing of the lumbar facet interference screw. Spine 30:E34–E39

    Article  Google Scholar 

  24. Wang ST, Goel VK, Fu CY, Kubo S, Choi W, Liu CL, Chen TH (2005) Posterior instrumentation reduces differences in spine stability as a result of different cage orientations: an in vitro study. Spine 30:62–67

    Article  PubMed  Google Scholar 

  25. Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec JC, Dickman CA (2006) Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Spine 31:762–768. doi:10.1097/01.brs.0000206360.83728.d2

    Article  PubMed  Google Scholar 

  26. Chen SH, Lin SC, Tsai WC, Wang CW, Chao SH (2012) Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery—a finite element analysis. BMC Musculoskelet Disord 13:72. doi:10.1186/1471-2474-13-72

    Article  PubMed Central  PubMed  Google Scholar 

  27. Duncan JW, Bailey RA (2013) An analysis of fusion cage migration in unilateral and bilateral fixation with transforaminal lumbar interbody fusion. Eur Spine J 22:439–445. doi:10.1007/s00586-012-2458-x

    Article  PubMed Central  PubMed  Google Scholar 

  28. Yuan C, Chen K, Zhang H, He S (2014) Unilateral versus bilateral pedicle screw fixation in lumbar interbody fusion: a meta-analysis of complication and fusion rate. Clin Neurol Neurosurg 117:28–32. doi:10.1016/j.clineuro.2013.11.016

    Article  PubMed  Google Scholar 

  29. Cho W, Wu C, Mehbod AA, Transfeldt EE (2008) Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study. Clin Biomech (Bristol, Avon) 23:979–985. doi:10.1016/j.clinbiomech.2008.02.008

    Article  Google Scholar 

  30. Hartensuer R, Riesenbeck O, Schulze M, Gehweiler D, Raschke MJ, Pavlov PW, Vordemvenne T (2014) Biomechanical evaluation of the Facet Wedge: a refined technique for facet fixation. Eur Spine J. doi:10.1007/s00586-014-3533-2

  31. Hou Y, Shen Y, Liu Z, Nie Z (2013) Which posterior instrumentation is better for two-level anterior lumbar interbody fusion: translaminar facet screw or pedicle screw? Arch Orthop Trauma Surg. 133:37–42. doi:10.1007/s00402-012-1636-y

    Article  PubMed  Google Scholar 

  32. Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896

    Article  CAS  PubMed  Google Scholar 

  33. Labrom RD, Tan JS, Reilly CW, Tredwell SJ, Fisher CG, Oxland TR (2005) The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine 30:E556–E561

    Article  Google Scholar 

  34. Lowe TG, Hashim S, Wilson LA, O'Brien MF, Smith DA, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394

    Article  PubMed  Google Scholar 

  35. Tan JS, Bailey CS, Dvorak MF, Fisher CG, Oxland TR (2005) Interbody device shape and size are important to strengthen the vertebra-implant interface. Spine 30:638–644

    Article  PubMed  Google Scholar 

  36. Hou Y, Luo Z (2009) A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level. Spine 34:E427–E433. doi:10.1097/BRS.0b013e3181a2ea0a

    Article  Google Scholar 

  37. Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A (2014) Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. doi:10.1007/s00586-014-3466-9

  38. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg 6:81–89. doi:10.1111/os.12098

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schmoelz.

Ethics declarations

Interessenkonflikt

W. Schmoelz und A. Keiler geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmoelz, W., Keiler, A. Intervertebrale Cages aus biomechanischer Sicht. Orthopäde 44, 132–137 (2015). https://doi.org/10.1007/s00132-014-3071-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-014-3071-y

Schlüsselwörter

Keywords

Navigation