Skip to main content

Advertisement

Log in

Nonfusionstechniken zur Behandlung der kindlichen Skoliose

Non-fusion techniques for treatment of pediatric scoliosis

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Konventionelle Operationstechniken zur Korrektur einer Skoliose führen zumeist zu einer Fusion der instrumentierten Wirbelsäulensegmente. Äußerst kritisch ist dieses bei Kindern mit signifikantem Restwachstum zu beurteilen, da es konsekutiv zu einem dysproportionierten Körperwachstum mit hypoplastischem Thorax und assoziierter Begleitmorbidität kommt. Inzwischen stehen sog. Nonfusionstechniken (u. a. Growing Rods, Vertical Expandable Prosthetic Titanium Rib® [VEPTR], Staples) zur Behandlung der kindlichen Skoliose zur Verfügung. Ihr jeweiliges Indikationsspektrum muss jedoch penibel eingehalten werden, um Komplikationen wie ein Therapie- und Materialversagen zu minimieren. Neu ist die Entwicklung einer extrakorporalen magnetischen Distraktion bei Growing Rods (MAGEC®), die operative Nachstellungen entbehrlich macht. Auch für das VEPTR-Verfahren wird eine ähnliche Technik der Wachstumsanpassung ohne Folgeoperationen demnächst zu Verfügung stehen. Dieses ist ein wesentlicher Fortschritt bei der Anwendung von Nonfusionstechniken und wird sicherlich zu einer zunehmenden Verbreitung solcher Operationsverfahren führen.

Abstract

The primary goal of treatment in children with early onset scoliosis (EOS) is to control the deformity and to allow spinal and chest wall growth to continue and improve pulmonary function. In skeletally immature children spondylodesis leads to fusion of the instrumented segments with associated nonsymmetrical growth and pulmonary insufficiency. Non-fusion, techniques such as growing rods, vertical expandable prosthetic titanium rib® (VEPTR) and staples have evolved over the past years. Each technique has its different spectrum of indications which the surgeon has to follow accurately to prevent the patient from developing complications. A new trend started by using magnetically controlled growing rods to avoid the need for anesthesia and open surgery during adaptive growth. The intention of this article is to give the reader a synopsis about the three most important non-fusion techniques based on own experience and the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Akbarnia BA, Breakwell LM, Marks DS et al (2008) Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine 33(9):984–990

    Article  PubMed  Google Scholar 

  2. Akbarnia BA, Cheung K, Noordeen H et al (2012) Next generation of growth-sparing technique: preliminary clinical results of a Magnetically Controlled Growing Rod (MCGR) in 14 patients with early onset scoliosis. Spine (Epub ahead of print)

  3. Akbarnia BA, Marks DS, Boachie-Adjei O et al (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine 17(Suppl):S46–S57

    Article  Google Scholar 

  4. Bess S, Akbarnia BA, Thompson GH et al (2010) Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg [Am] 92(15):2533–2543

    Google Scholar 

  5. Betz RR, Kim JD, Andrea LP (2003) An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis: a feasibility, safety and utility study. Spine 28(20):255–265

    Article  Google Scholar 

  6. Betz RR, Mulcahey MJ, Ramirez N (2008) Mortality and life-threatening events after vertical expandable prosthetic titanium rib surgery in children with hypoplastic chest wall deformity. J Pediatr Orthop 28:850–853

    Article  PubMed  Google Scholar 

  7. Betz RR, Ranade A, Samdani AF (2010) Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine 35(2):169–176

    Article  PubMed  Google Scholar 

  8. Campbell MR Jr, Adcox BM, Smith MD (2007) The effect of mid-thoracic VEPTR opening wedge thoracostomy on cervical tilt associated with congenital thoracic scoliosis in patients with thoracic insufficiency syndrome. Spine 32:2171–2177

    Article  PubMed  Google Scholar 

  9. Cheung KM, Cheung JP, Samartzis D et al (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379(9830):1967–1974

    Article  PubMed  Google Scholar 

  10. Dannawi Z, Altaf F, Harshavardhana NS et al (2013) Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J 95-B(1):75–80

    Google Scholar 

  11. Dimeglio A (1993) Growth of the spine below age 5 years. J Pediatr Orthop-B 1:102–107

    Google Scholar 

  12. Emans JB, Caubet JF, Ordonez CL (2005) The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib: growth of thoracic spine and improvement of lung volumes. Spine 30(Suppl):58–68

    Article  Google Scholar 

  13. Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg [Am] 44-A:591–610

    Google Scholar 

  14. Hell AK, Campbell RM, Hefti F (2005) The vertical expandable prosthetic titanium rib implant for the treatment of thoracic insufficiency syndrome associated with congenital and neuromuscular scoliosis in young children. J Pediatr Orthop-B 14(4):287–293

    Google Scholar 

  15. Hell AK, Hefti F, Campbell RM Jr (2004) Treatment of congenital scoliosis with the vertical expandable prosthetic titanium rib implant. Orthopäde 33:911–918

    Article  CAS  PubMed  Google Scholar 

  16. Lavelle WF, Samdani AF, Cahill PJ et al (2011) Clinical outcomes of nitinol staples for preventing curve progression in idiopathic scoliosis. J Pediatr Orthop 31(Suppl 1):107–113

    Article  Google Scholar 

  17. Mayer OH, Redding G (2009) Early changes in pulmonary function after vertical expandable prosthetic titanium rib insertion in children with thoracic insuffiency syndrome. J Pediatr Orthop 29:35–38

    Article  PubMed  Google Scholar 

  18. Motoyama EK, Yang CI, Deeney VF (2009) Thoracic malformation with early-onset scoliosis: effect of serial VEPTR expansion thoracoplasty on lung growth and function in children. Paediatr Respir Rev 10:12–17

    PubMed  Google Scholar 

  19. Nassr A, Larson AN, Crane B (2009) Iatrogenic thoracic outlet syndrome secondary to vertical expandable prosthetic titanium rib expansion thoracoplasty: pathogenesis and strategies for prevention/treatment. J Pediatr Orthop 29:31–34

    Article  PubMed  Google Scholar 

  20. Redding G, Song K, Inscore S (2008) Lung function asymmetry in children with congenital and infantile scoliosis. Spine J 8:639–644

    Article  PubMed  Google Scholar 

  21. Samdani AF, Hilaire TS, Emans JB (2010) The usefulness of VEPTR in the older child with complex spine and chest deformity. Clin Orthop Relat Res 468:700–704

    Article  PubMed Central  PubMed  Google Scholar 

  22. Samdani AF, Ranade A, Dolch HJ (2009) Bilateral use of the VEPTR attached to the pelvis: a novel treatment for scoliosis in the growing spine. J Neurosurg Spine 10:287–292

    Article  PubMed  Google Scholar 

  23. Stücker R (2009) Ergebnisse der Behandlung von progredienten Skoliosen mit SMA-Klammern. Orthopäde 38:176–180

    Article  PubMed  Google Scholar 

  24. Trobisch PD, Samdani A, Cahill P et al (2011) Vertebral body stapling as an alternative in the treatment of idiopathic scoliosis. Oper Orthop Traumatol 23(3):227–231

    Article  CAS  PubMed  Google Scholar 

  25. Vitale MG, Matsumoto H, Roye DP Jr (2008) Health-related quality of life in children with thoracic insufficiency syndrome. J Pediatr Orthop 28:239–243

    Article  PubMed  Google Scholar 

  26. Wimmer C, Wallnöfer P, Pfandlsteiner T (2009) VEPTR 4 years follow up in the treatment of severe spinal deformities. Euro Spine J 18(Suppl 4):424

    Google Scholar 

  27. Winter RB (1981) Convex anterior and posterior hemiarthrodesis and hemiepiphyseodesis in young children with progressive congenital scoliosis. J Pediatr Orthop 1(4):361–366

    Article  CAS  PubMed  Google Scholar 

  28. Zazycki D, Tesiorowski M, Potaczek T (2008) Use of VEPTR device in the treatment of congenital spine and thorax deformities. Przegl Lek 65:329–323

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. K. Ridderbusch, M. Rupprecht, P. Kunkel, R. Stücker geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stücker.

Additional information

K. Ridderbusch und M. Rupprecht haben in gleichen Teilen zu dieser Arbeit beigetragen und teilen sich deshalb die Erstautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridderbusch, K., Rupprecht, M., Kunkel, P. et al. Nonfusionstechniken zur Behandlung der kindlichen Skoliose. Orthopäde 42, 1030–1037 (2013). https://doi.org/10.1007/s00132-012-2049-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-012-2049-x

Schlüsselwörter

Keywords

Navigation