Skip to main content
Log in

Füllmaterialien zur Augmentation von osteoporotischen Wirbelkörperfrakturen

Filler materials for augmentation of osteoporotic vertebral fractures

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

In den letzten Jahren hat die Augmentation von Wirbelkörperkompressionsfrakturen aufgrund der guten klinischen Ergebnisse eine breite Anwendung gefunden. Die Anforderungen, die an die Füllmaterialien gestellt werden, sind vielfältig. Das Material soll gewebeverträglich sein, dem geschwächten Wirbelkörper eine ausreichende Stabilität verleihen und gleichzeitig knochenähnliche biomechanische Eigenschaften besitzen. Um die Wirbelkörperaugmentation minimal-invasiv durch perkutane Injektion durchführen zu können, muss das Material injizierbar sein und (zur kontrollierten Implantation unter Röntgendurchleuchtung) eine ausreichende Röntgenkontrastgebung besitzen. Polymethylmethacrylat (PMMA) stellt heute das am häufigsten eingesetzte Füllmaterial in der Wirbelkörperaugmentation dar. Wegen der fehlenden biologischen Eigenschaften von PMMA gewinnen jedoch die resorbierbaren Knochenersatzmaterialien, wie Calciumphosphatzement, zunehmend an Bedeutung. In der Folgenden Arbeit werden die heute zur Wirbelkörperaugmentation gängigen Knochenersatzmaterialien vorgestellt und ihre Vor- und Nachteile diskutiert.

Abstract

In the recent years augmentation of vertebral compression fracture has been widely used with satisfactory clinical results. The filler materials for use in vertebral body augmentation have to meet many requirements. They should be biocompatible, be able to stabilize the fractured vertebral body, and their biomechanical properties should approximate those of cancellous bone. Furthermore, for a minimally invasive method that involves percutaneous injection of bone substitutes, the materials should be injectable and possess good radiopacity for the fluoroscopically guided procedure. At the present, polymethylmethacrylate is the most commonly used filler material for vertebral body augmentation. Due to the lack of bioactivity of polymethylmethacrylate that remains as an inert material in the bony tissue, new resorbable filler materials like calcium phosphate cement are increasingly in the focus of interest. In the following paper, the currently used filler materials for vertebral body augmentation and their characteristics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Andrianjatovo H, Lemaître L (1995) Effects of polysaccharides on the cement properties in the cement monocalcium phosphate/β-tricalcium phosphate system. Innov Tech Biol Med 16(1):140–147

    Google Scholar 

  2. Bai B, Jazrawi LM, Kummer FJ, Spivak JM (1999) The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 15:1521–1526

    Article  Google Scholar 

  3. Belkoff SM, Mathis JM, Jasper LE et al (2001) The biomechanics of vertebroplasty: the effect of cement volume on mechanical behavior. Spine 26:1537–1541

    Article  CAS  PubMed  Google Scholar 

  4. Belkoff SM, Molloy S (2003) Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine 28:1555–1559

    Article  PubMed  Google Scholar 

  5. Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty, a biomechanical investigation. J Bone Joint Surg Br 84:748–752

    Article  CAS  PubMed  Google Scholar 

  6. Blattert TR, Jestaedt L, Weckbach A (2009) Suitibility of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation, a controlled randomized clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine 34:108–114

    Article  PubMed  Google Scholar 

  7. Boger A, Heini P, Windolf M, Schneider E (2007) Adjacent vertebral failure after vertebroplasty: a biomechanical study of low modulus PMMA cement. Eur Spine J 16(12):2118–2125

    Article  PubMed  Google Scholar 

  8. Boyd D, Towler MR, Wren A, Clarkin OM (2008) Comparison of an experimental bone cement with surgical Simplex® P, Spineplex® and Cortoss®. J Mater Sci Mater Med 19:1745–1752

    Article  CAS  PubMed  Google Scholar 

  9. Brown WE, Chow LC (1995) Dental restorative cement pastes. US patent no. 4518430

  10. Cooper C, Melton LJ (1992) Vertebral fractures. BMJ 304(6842):1634–1635

    Article  CAS  PubMed  Google Scholar 

  11. Dahl OE, Garvik LJ, Lyberg T (1994) Toxic effect of methylmetacrylate monomere on leukocytes and endothelial cells in vitro. Acta Orthop Scand 65:147–153

    Article  CAS  PubMed  Google Scholar 

  12. De Vrind HH, Wondergem J, Haveman J (1992) Hyperthermia induced damage to rat sciatic nerv assessed in vivo with functional methods and with electrophysiology. J Neurosci Methods 45:165–174

    Article  Google Scholar 

  13. Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268

    Article  CAS  PubMed  Google Scholar 

  14. Fribourg D, Tang C, Sra P et al (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29:2270–2276

    Article  PubMed  Google Scholar 

  15. Galibert P, Deramont H, Rosat P et al (1987) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33:166–168

    CAS  PubMed  Google Scholar 

  16. Garfin SR, Yuan HA, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26:1511–1515

    Article  CAS  PubMed  Google Scholar 

  17. Gold DT (1996) The clinical impact of vertebral fractures: Quality of life in women with osteoporosis. Bone 18:185–189

    Article  Google Scholar 

  18. Grafe IA, Baier M, Nöldge G et al (2008) Calciumphosphate and polymethylmethacrylate cement in long term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine 33(11):1284–1290

    Article  PubMed  Google Scholar 

  19. Heini PF, Berlemann U, Kaufmann M et al (2001) Augmentation of mechanical properties in osteoporotic vertebral bones: A biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10:164–171

    Article  CAS  PubMed  Google Scholar 

  20. Johnell O (1996) Advances in osteoporosis: Better identification of risk factors can reduce morbidity and mortality. J Intern Med 239:299–304

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Chien S, Branemark PI (1999) Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 17:891–899

    Article  CAS  PubMed  Google Scholar 

  22. Lim TH, Brebach GT, Renner SM et al (2002) Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 27:1297–1302

    Article  PubMed  Google Scholar 

  23. Melton LJ (1997) Epidemiology of spinal osteoporosis. Spine 22:2–11

    Article  Google Scholar 

  24. Palussiere J, Berge J, Gangi A et al (2005) Clinical results of an open prospective study of a bis-GMA composite in percutaneous vertebral augmentation. Eur Spine J 14:982–991

    Article  PubMed  Google Scholar 

  25. Park JB (1995) Orthopaedic prosthesis fixation. In: Bronzino JD (ed) The biomedical engineering handbook. CRC, Boca Raton, pp 704–724

  26. Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit. Finite-element analysis. Spine 28:991–996

    Article  PubMed  Google Scholar 

  27. Rauschmann M, Vogel T, Verheyden A et al (2010) Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (Cerament™ Spinesupport) in vertebral compression fractures due to osteoporosis. Eur Spine J (in press)

  28. Ross PD (1998) Osteoporosis: epidemiology and risk assessment. J Nutr Health Aging 2:178–183

    CAS  PubMed  Google Scholar 

  29. Stubbs D, Deakin M, Chapman-Sheath P et al (2004) In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25:5037–5044

    Article  CAS  PubMed  Google Scholar 

  30. Taylor RS, Taylor RJ, Fritzell P (2006) Balloon kyphoplasty and vertebroplasty for vertebral compression fracture – a comparative systematic review of efficacy and safety. Spine 31:2747–2755

    Article  PubMed  Google Scholar 

  31. Togawa D, Bauer TW, Liebermann ICH et al (2003) Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethylmethacrylate. Spine 28:1521–1527

    Article  PubMed  Google Scholar 

  32. Togawa D, Kovacic JJ, Liebermann ICH et al (2006) Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine – percutaneous vertebroplasty and kyphoplasty. Spine 31:1–4

    Article  Google Scholar 

  33. Trout AT, Kallmes DF, Kaufmann TJ (2006) New fractures after vertebroplasty: adjacent fractures occurs significantly sooner. Am J Neuroradiol 27:217–223

    CAS  PubMed  Google Scholar 

  34. Verlaan JJ, Oner FC, Verbout AJ, Dhert WJ (2003) Temperature elevation after vertebroplasty in the gout spine. J Biomed Mater Res 67:581–585

    Article  Google Scholar 

  35. Walsh WR, Morberg P, Yu Y et al (2003) Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop 406:228–236

    Article  PubMed  Google Scholar 

  36. Wasnich U (1996) Vertebral fracture epidemiology. Bone 18:1791–1796

    Article  Google Scholar 

  37. Wilke HJ, Mehnert U, Claes LE et al (2006) Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethylmetacrylate or calcium phosphate cement under cyclic loading. Spine 31:2934–2941

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arabmotlagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arabmotlagh, M., Rauschmann, M. Füllmaterialien zur Augmentation von osteoporotischen Wirbelkörperfrakturen. Orthopäde 39, 687–692 (2010). https://doi.org/10.1007/s00132-010-1619-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-010-1619-z

Schlüsselwörter

Keywords

Navigation