Skip to main content
Log in

Molekulare und genetische Aspekte der idiopathischen Skoliose

Bluttest bei idiopathischer Skoliose

Molecular and genetic aspects of idiopathic scoliosis

Blood test for idiopathic scoliosis

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Wirbelsäulendeformitäten und insbesondere die Skoliose sind die häufigsten orthopädischen Deformitäten bei Kindern und Jugendlichen. Etwa 1–6% der Bevölkerung haben eine Skoliose. Diese Erkrankung führt zu schweren Deformitäten der Wirbelsäule und betrifft vorwiegend jugendliche Mädchen.

Obgleich die multifaktorielle Genese der adoleszenten idiopathischen Skoliose (AIS) allgemein anerkannt ist, sind die genetischen Ursachen der AIS noch weitgehend unbekannt. Unsere vorherigen Studien deuten auf eine generalisierte Funktionsstörung bei der Übertragung von Melatonin (Hormon, das hauptsächlich im Gehirn und in der Epiphyse produziert wird). Mittlerweile haben wir nachgewiesen, dass ein derartiger Defekt in der Signalübertragung durch chemische Veränderungen verursacht wird, die die Funktion der an die Melatoninrezeptoren gekoppelten hemmenden G-Proteine inaktivieren. Diese Entdeckung hat zur Entwicklung des ersten Bluttests zur Erkennung von symptomlosen Kindern geführt, bei denen das Risiko einer Skoliose besteht. Da eine Funktion bestimmt wird (Zellreaktion auf Melatonin), hat dieser Test den einzigartigen Vorteil ohne Kenntnisse von Mutationen in defekten Genen, die eine AIS auslösen können, durchgeführt werden zu können.

Abstract

Spinal deformities, and particularly scoliosis, are the most frequent forms of orthopedic deformities in children and adolescents. About 1–6% of the population has scoliosis. This disorder leads to severe spinal deformities and predominantly affects adolescent girls.

Although the multifactorial origin of adolescent idiopathic scoliosis (AIS) is broadly recognized, the genetic causes of AIS are still largely unknown. Our previous studies suggested a generalized dysfunction of melatonin transduction (the hormone that is primarily produced in the brain and epiphysis). In the meantime we have demonstrated that such a defect of signal transduction is caused by chemical alterations, which inactivate the function of the inhibitory G protein-coupled melatonin receptors. This discovery has led to the development of the first blood test to detect children without symptoms who are at risk of developing scoliosis. Since a single function (cellular reaction to melatonin) is determined, the unique advantage of this test is that it can be performed without knowledge of mutations in defective genes that could provoke the onset of AIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Axenovich TI, Zaidman AM, Zorkoltseva IV et al (1999) Segregation analysis of idiopathic scoliosis: demonstration of a major gene effect. Am J Med Genet 86(4): 389–394

    Article  PubMed  CAS  Google Scholar 

  2. Azeddine B, Letellier K, Wang da S et al (2007) Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res 462: 45–52

    Article  PubMed  Google Scholar 

  3. Bagnall KM, Raso VJ, Hill DL et al (1996) Melatonin levels in idiopathic scoliosis. Diurnal and nocturnal serum melatonin levels in girls with adolescent idiopathic scoliosis. Spine 21(17): 1974–1978

    Article  PubMed  CAS  Google Scholar 

  4. Bagnall KM, Beuerlein M, Johnson P et al (2001). Pineal transplantation after pinealectomy in young chickens has no effect on the development of scoliosis. Spine 26(9): 1022–1027

    Article  PubMed  CAS  Google Scholar 

  5. Beuerlein M, Wang X, Moreau M et al (2001) Development of scoliosis following pinealectomy in young chickens is not the result of an artifact of the surgical procedure. Microsc Res Tech 53(1): 81–86

    Article  PubMed  CAS  Google Scholar 

  6. Beuerlein M, Wilson J, Moreau M et al (2001) The critical stage of pinealectomy surgery after which scoliosis is produced in young chickens. Spine 26(3): 237–240

    Article  PubMed  CAS  Google Scholar 

  7. Blank RD, Raggio CL, Giampietro PF, Camacho NP (1999) A genomic approach to scoliosis pathogenesis. Lupus 8(5): 356–360

    Article  PubMed  CAS  Google Scholar 

  8. Borjigin J, Li X, Snyder SH (1999) The pineal gland and melatonin: molecular and pharmacologic regulation. Ann Rev Pharmacol Toxicol 39: 53–65

    Article  CAS  Google Scholar 

  9. Brodner W, Krepler P, Nicolakis M et al (2000) Melatonin and adolescent idiopathic scoliosis. J Bone Joint Surg Br 82(3): 399–403

    Article  PubMed  CAS  Google Scholar 

  10. Brydon L, Roka F, Petit L et al (1999) Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol 13(12): 2025–2038

    Article  PubMed  CAS  Google Scholar 

  11. Byrd JA III (1988) Current theories on the etiology of idiopathic scoliosis. Clin Orthop 229: 114–119

    PubMed  Google Scholar 

  12. Carr AJ, Ogilvie DJ, Wordsworth BP et al (1992) Segregation of structural collagen genes in adolescent idiopathic scoliosis. Clin Orthop 274: 305–310

    PubMed  Google Scholar 

  13. Cheung KM, Wang T, Poon AM et al (2005) The effect of pinealectomy on scoliosis development in young nonhuman primates. Spine 30(18): 2009–2013

    Article  PubMed  Google Scholar 

  14. Connor JM, Conner AN, Connor RA et al (1987) Genetic aspects of early childhood scoliosis. Am J Med Genet 27(2): 419–424

    Article  PubMed  CAS  Google Scholar 

  15. Dubousset J, Queneau P (1983) Role and indications for surgery in Duchenne de Boulogne muscular dystrophy with rapid development. Rev Chir Orthop Reparat Apparat Mot 69(3): 207–220

    CAS  Google Scholar 

  16. Fagan AB, Kennaway DJ, Sutherland AD (1998) Total 24-hour melatonin secretion in adolescent idiopathic scoliosis. A case-control study. Spine. 23(1): 41–46

    Google Scholar 

  17. Fjelldal PG, Grotmol S, Kryvi H et al (2004) Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J Pineal Res 36(2): 132–139

    Article  PubMed  CAS  Google Scholar 

  18. Hilibrand AS, Blakemore LC, Loder RT et al (1996) The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis. Spine 21(10): 1140–1146

    Article  PubMed  CAS  Google Scholar 

  19. Inoh H, Kawakami N, Matsuyama Y et al (2001) Correlation between the age of pinealectomy and the development of scoliosis in chickens. Spine 26(9): 1014–1012

    Article  PubMed  CAS  Google Scholar 

  20. Giampietro PF, Raggio CL, Blank RD (1999) Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am J Med Genet 83(3): 164–177

    Article  PubMed  CAS  Google Scholar 

  21. Jin X, von GC, Pieschl RL et al (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23(3): 1054–1060

    Article  PubMed  CAS  Google Scholar 

  22. Jockers R, Petit L, Brydon L et al (1998) Structure and function of melatonin receptors. C R Seances Soc Biol Fil 192(4): 659–667

    PubMed  CAS  Google Scholar 

  23. Kokkola T, Laitinen JT (1998) Melatonin receptor genes. Ann Med 30(1): 88–94

    Article  PubMed  CAS  Google Scholar 

  24. Letellier K, Azeddine B, Parent S et al. (2008) Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J Pineal Res 45(4): 383–393

    Article  PubMed  CAS  Google Scholar 

  25. Lowe TG, Edgar M, Margulies JY et al (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am 82(8): 1157–1168

    PubMed  Google Scholar 

  26. Machida M (1999) Cause of idiopathic scoliosis. Spine 15: 2576–2583

    Article  Google Scholar 

  27. Machida M, Dubousset J, Imamura Y et al (1993) An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine 18(12): 1609–1615

    Article  PubMed  CAS  Google Scholar 

  28. Machida M, Murai I, Miyashita Y et al (1999) Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 24(19): 1985–1989

    Article  PubMed  CAS  Google Scholar 

  29. Machida M, Dubousset J, Yamada T et al. (2006) Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res 41(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  30. Miller NH (1999) Cause and natural history of adolescent idiopathic scoliosis. Orthop Clin North Am 30(3): 343–352

    Article  PubMed  CAS  Google Scholar 

  31. Miller NH (2002) Genetics of familial idiopathic scoliosis. Clin Orthop 401: 60–64

    Article  PubMed  Google Scholar 

  32. Miller NH, Schwab DL, Sponseller PD et al (2001) Characterization of idiopathic scoliosis in a clinically well-defined population. Clin Orthop 392: 349–357

    Article  PubMed  Google Scholar 

  33. Morcuende JA, Minhas R, Dolan L et al (2003) Allelic variants of human melatonin 1A receptor in patients with familial adolescent idiopathic scoliosis. Spine 28(17): 2025–2028

    Article  PubMed  Google Scholar 

  34. Moreau A, Wang DS, Forget S et al (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine 29: 1772–1781

    Article  PubMed  Google Scholar 

  35. O’Kelly C, Wang X, Raso J et al (1999) The production of scoliosis after pinealectomy in young chickens, rats, and hamsters. Spine 24(1): 35–43

    Article  Google Scholar 

  36. Peters MF, Knappenberger KS, Wilkins D et al (2007) Evaluation of cellular dielectric spectroscopy, a whole-cell, label-free technology for drug discovery on Gi-coupled GPCRs. J Biomol Screen 12(3): 312–319

    Article  PubMed  CAS  Google Scholar 

  37. Petit L, Lacroix I, de Coppet P et al (1999) Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3’-5’-monophosphate pathway. Biochem Pharmacol 58(4): 633–639

    Article  PubMed  CAS  Google Scholar 

  38. Poirel VJ, Cailotto C, Streicher D et al (2003) MT1 melatonin receptor mRNA tissular localization by PCR amplification. Neuroendocrinol Lett 24(1–2): 33–38

    Google Scholar 

  39. Qiu XS, Tang NL, Yeung HY et al (2007) Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 32(16): 1748–1753

    Article  PubMed  Google Scholar 

  40. Roka F, Brydon L, Waldhoer M et al (1999) Tight association of the human Mel(1a)-melatonin receptor and G(i): precoupling and constitutive activity. Mol Pharmacol 56(5): 1014–1024

    PubMed  CAS  Google Scholar 

  41. Roseboom PH, Namboodiri MA, Zimonjic DB et al (1998) Natural melatonin ‚knockdown‘ in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res Mol Brain Res 63(1): 189–197

    Article  PubMed  CAS  Google Scholar 

  42. Sadat-Ali M, al Habdan I, al Othman A (2000) Adolescent idiopathic scoliosis. Is low melatonin a cause? Joint Bone Spine 67(1): 62–64

    PubMed  CAS  Google Scholar 

  43. Sobajima S, Kin A, Baba I et al (2003) Implication for melatonin and its receptor in the spinal deformities of hereditary lordoscoliotic rabbits.Spine 28(6): 554–558

    Article  PubMed  Google Scholar 

  44. Suh KT, Lee SS, Hwang SH et al (2007) Elevated soluble receptor activator of nuclear factor-kappaB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J 16(10): 1563–1569

    Article  PubMed  Google Scholar 

  45. Szuts V, Mollers U, Bittner K et al (1998) Terminal differentiation of chondrocytes is arrested at distinct stages identified by their expression repertoire of marker genes. Matrix Biol 17(6): 435–448

    Article  PubMed  CAS  Google Scholar 

  46. Thillard MJ (1959) Vertebral column deformities following epiphysectomy in the chick. C R Hebd Seances Acad Sci 248(8): 1238–1240

    PubMed  CAS  Google Scholar 

  47. Turhan E, Acaroglu E, Bozkurt G et al (2006) Unilateral enucleation affects the laterality but not the incidence of scoliosis in pinealectomized chicken. Spine 31(2): 133–138

    Article  PubMed  Google Scholar 

  48. van Meurs J, van Lent P, Stoop R et al (1999) Cleavage of aggrecan at the Asn341-Phe342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis Rheum 42(10): 2074–2084

    Article  Google Scholar 

  49. Vanecek J (1998) Cellular mechanisms of melatonin action. Physiol Rev 78(3): 687–721

    PubMed  CAS  Google Scholar 

  50. Veldhuizen AG, Wever DJ, Webb PJ (2000) The aetiology of idiopathic scoliosis: biomechanical and neuromuscular factors. Eur Spine J 9(3): 178–184

    Article  PubMed  CAS  Google Scholar 

  51. Verdonk E, Johnson K, McGuinness R et al (2006) Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev Technol 4(5): 609–619

    Article  PubMed  CAS  Google Scholar 

  52. von Gall C, Stehle JH, Weaver DR (2002) Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 309(1): 151–162

    Article  Google Scholar 

  53. Wang X, Jiang H, Raso J et al (1997) Characterization of the scoliosis that develops after pinealectomy in the chicken and comparison with adolescent idiopathic scoliosis in humans. Spine 22(22):2626–2635

    Article  PubMed  CAS  Google Scholar 

  54. Wise CA, Barnes R, Gillum J et al (2000) Localization of susceptibility to familial idiopathic scoliosis. Spine 25(18): 2372–2380

    Article  PubMed  CAS  Google Scholar 

  55. Witt-Enderby PA, Bennett J, Jarzynka MJ et al (2003) Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci 72(20): 2183–2198

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Unterstützt durch Forschungsstipendien von La Fondation Yves Cotrel de l’Institut de France, Paris, Frankreich (Prof. Moreau und Dr. Labelle) und von Paradigm Spine, New York, USA (Prof. Moreau). Hr. Azeddine wird von einem Promotionsstipendium eines Mentoren-Schulungsprogramms bzw. von einem Forschungsprogramm des Canadian Institute of Health unterstützt. Wir sind den Studienteilnehmern und ihren Familien zu Dank verpflichtet. Wir danken außerdem Fr. Ginette Lacroix für die Studienkoordination, Fr. Ginette Larouche, Fr. Marjolaine Roy-Beaudry und Fr. Julie Joncas für ihre pflegerische Unterstützung sowie den Pflegeteams am Sainte-Justine University Hospital, The Montreal’s Children Hospital und The Shriners Hospital for Children in Montreal.

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Paradigm Spine beteiligt sich an Forschungsarbeiten von Prof. Moreau. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moreau Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, A., Akoumé Ndong, MY., Azeddine, B. et al. Molekulare und genetische Aspekte der idiopathischen Skoliose. Orthopäde 38, 114–121 (2009). https://doi.org/10.1007/s00132-008-1362-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1362-x

Schlüsselwörter

Keywords

Navigation