Skip to main content
Log in

3-Tesla-MRT vs. Arthroskopie bei der Diagnostik degenerativer Knorpelschäden des Kniegelenkes

Erste klinische Ergebnisse

3-Tesla MRI vs. arthroscopy for diagnostics of degenerative knee cartilage diseases

Preliminary clinical results

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In der Literatur finden sich nur wenige Arbeiten, die sich mit der MRT-Diagnostik degenerativer Knorpelschäden befassen. Untersuchungen über die MRT-Diagnostik des Gelenkknorpels bei Feldstärken von 3 Tesla demonstrieren viel versprechende Ergebnisse. Um den Nutzen des 3-Tesla-MRT zur Entscheidungsfindung konservativer oder operativer Behandlungspfade zu evaluieren, ist diese Studie auf Patienten mit degenerativen Knorpelschäden gerichtet.

Methoden

Es wurden 32 Patienten mit chronischen Knieschmerzen, einem Alter von ≥40 Jahren, unauffälliger Traumanamnese und zumindest zweitgradigen degenerativen Knorpelschäden einbezogen. Die im präoperativen 3-Tesla-MRT (axial/koronar/sagittal PD-TSE-SPAIR, axial/sagittal 3D-T1-FFE, axial T2-FFE, Philips Medical Systems, Intera-3.0T™) festgestellten Knorpelveränderungen wurden klassifiziert (Grad I–IV) und mit den arthroskopischen Befunden verglichen.

Ergebnisse

Bei 36% (70/192) der untersuchten Knorpelflächen zeigte sich keine Übereinstimmung zwischen dem MRT- und Arthroskopiegrading. Am häufigsten wurden hierbei zweit- und drittgradige Knorpelschäden miteinander verwechselt. Entsprechend der positiven Vorhersagewerte liegt die Wahrscheinlichkeit, dass sich bei einem auffälligen MRT-Befund auch arthroskopisch ein entsprechender Schaden findet, zwischen 39 und 72%. Hingegen zeigten die Spezifitäten und negativen Vorhersagewerte bei den unterschiedlichen Schädigungsgraden Werte zwischen 85 und 95%.

Schlussfolgerung

Hinsichtlich der hohen Spezifitäten und negativen Vorhersagewerte ist das 3-Tesla-MRT als Ausschlussmethode sogar geringfügiger Knorpeldegenerationen von Bedeutung. Zusammenfassend ist das 3-Tesla-MRT bei der Diagnostik degenerativer Knorpelschäden eine unterstützende, nicht-invasive Methode zur Entscheidung konservativer oder operativer Behandlungsmöglichkeiten. Dennoch kann das 3-Tesla-MRT den Nutzen einer diagnostischen Arthroskopie für eine dezidierte Beurteilung der Gelenkflächen und eine entsprechende Therapieplanung nicht ersetzten. Dies gilt insbesondere für Therapieansätze, bei denen die Differenzierung zweit- und drittgradiger Knorpelschäden von Interesse ist.

Abstract

Background

The literature contains only a few studies investigating the magnetic resonance imaging (MRI) diagnostics of degenerative cartilage diseases. Studies on MRI diagnostics of the cartilage using field strengths of 3-Tesla demonstrate promising results. To assess the value of 3-Tesla MRI for decision making regarding conservative or operative treatment possibilities, this study focused on patients with degenerative cartilage diseases.

Methods

Thirty-two patients with chronic knee pain, a minimum age of 40 years, a negative history of trauma, and at least grade II degenerative cartilage disease were included. Cartilage abnormalities detected at preoperative 3-Tesla MRI (axial/koronar/sagittal PD-TSE-SPAIR, axial/sagittal 3D-T1-FFE, axial T2-FFE; Intera 3.0T, Philips Medical Systems) were classified (grades I–IV) and compared with arthroscopic findings.

Results

Thirty-six percent (70/192) of the examined cartilage surfaces demonstrated no agreement between MRI and arthroscopic grading. In most of these cases, grades II and III cartilage lesions were confounded with each other. Regarding the positive predictive values, the probability that a positive finding in MRI would be exactly confirmed by arthroscopy was 39–72%. In contrast, specificities and negative predictive values of different grades of cartilage diseases were 85–95%.

Conclusions

Regarding the high specificities and negative predictive values, 3-Tesla MRI is a reliable method for excluding even slight cartilage degeneration. In summary, in degenerative cartilage diseases, 3-Tesla MRI is a supportive, noninvasive method for clinical decision making regarding conservative or operative treatment possibilities. However, the value of diagnostic arthroscopy for a definitive assessment of the articular surfaces and for therapeutic planning currently cannot be replaced by 3-Tesla MRI. This applies especially to treatment options in which a differentiation between grade II and III cartilage lesions is of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Adam G, Prescher A, Nolte-Ernsting C et al. (1994) MRI of the hyaline knee joint cartilages. Animal and clinical studies. Rofo 160: 143–148

    PubMed  CAS  Google Scholar 

  2. Adams ME, Li DK, McConkey JP et al. (1991) Evaluation of cartilage lesions by magnetic resonance imaging at 0.15 T: comparison with anatomy and concordance with arthroscopy. J Rheumatol 18: 1573–1580

    PubMed  CAS  Google Scholar 

  3. Bachmann G, Heinrichs C, Jürgensen I et al. (1997) Comparison of different MRT techniques in the diagnosis of degenerative cartilage diseases. In vitro study of 50 joint specimens of the knee at T1.5. Rofo 166: 429–436

    PubMed  CAS  Google Scholar 

  4. Bachmann GF, Basad E, Rauber K et al. (1999) Degenerative joint disease on MRI and physical activity: a clinical study of the knee joint in 320 patients. Eur Radiol 9: 145–152

    Article  PubMed  CAS  Google Scholar 

  5. Blackburn WD Jr, Bernreuter WK, Rominger M, Loose LL (1994) Arthroscopic evaluation of knee articular cartilage: a comparison with plain radiographs and magnetic resonance imaging. J Rheumatol 21: 675–679

    PubMed  Google Scholar 

  6. Broderick LS, Turner DA, Renfrew DL et al. (1994) Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. Am J Roentgenol 1994 162: 99–103

    CAS  Google Scholar 

  7. Craig JG, Go L, Blechinger J et al. (2005) Three-tesla imaging of the knee: initial experience. Skeletal Radiol 34: 453–461

    Article  PubMed  Google Scholar 

  8. Disler DG, McCauley TR, Kelman CG et al. (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. Am J Roentgenol 167: 127–132

    CAS  Google Scholar 

  9. Drapé JL, Pessis E, Auleley GR et al. (1998) Quantitative MR imaging evaluation of chondropathy in osteoarthritic knees. Radiology 208: 49–55

    PubMed  Google Scholar 

  10. Eckstein F, Hudelmaier M, Wirth W et al. (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65: 433–441

    Article  PubMed  CAS  Google Scholar 

  11. Erickson SJ, Waldschmidt JG, Czervionke LF, Prost RW (1996) Hyaline cartilage: truncation artifact as a cause of trilaminar appearance with fat-suppressed three-dimensional spoiled gradient-recalled sequences. Radiology 201: 260–264

    PubMed  CAS  Google Scholar 

  12. Frank LR, Brossmann J, Buxton RB, Resnick D (1997) MR imaging truncation artifacts can create a false laminar appearance in cartilage. Am J Roentgenol 168: 547–554

    CAS  Google Scholar 

  13. Friemert B, Oberlander Y, Schwarz W et al. (2004) Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? A prospective study. Knee Surg Sports Traumatol Arthrosc 12: 58–64

    Article  PubMed  CAS  Google Scholar 

  14. Gold GE, Fuller SE, Hargreaves BA et al. (2005) Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imag 21: 476–481

    Article  Google Scholar 

  15. Gold GE, Reeder SB, Yu H et al. (2006) Articular cartilage of the knee: rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-state free precession–initial experience. Radiology 240: 546–551

    Article  PubMed  Google Scholar 

  16. Gross AE (2003) Cartilage resurfacing: filling defects. J Arthroplasty 18: 14–17

    Article  PubMed  Google Scholar 

  17. Guckel C, Jundt G, Schnabel K, Gachter A (1995) Spin-echo and 3D gradient-echo imaging of the knee joint: a clinical and histopathological comparison. Eur J Radiol 21: 25–33

    Article  PubMed  CAS  Google Scholar 

  18. Hodler J, Resnick D (1996) Current status of imaging of articular cartilage. Skeletal Radiol 25: 703–709

    Article  PubMed  CAS  Google Scholar 

  19. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10: 432–463

    Article  PubMed  CAS  Google Scholar 

  20. Jerosch J, Castro WH, Waal Malefijt MC de et al. (1997) Interobserver variation in diagnostic arthroscopy of the knee joint. „How really objective are arthroscopic findings?“ Unfallchirurg 100: 782–786

    Google Scholar 

  21. Kawahara Y, Uetani M, Nakahara N et al. (1998) Fast spin-echo MR of the articular cartilage in the osteoarthrotic knee. Correlation of MR and arthroscopic findings. Acta Radiol 39: 120–125

    PubMed  CAS  Google Scholar 

  22. Link TM, Sell CA, Masi JN et al. (2006) 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology – ROC analysis in an experimental model. Osteoarthritis Cartilage 14: 63–70

    Article  PubMed  CAS  Google Scholar 

  23. Lühring C, Anders S, Bäthis H et al. (2004) Gegenwärtige Praxis der Behandlung des Knorpelschadens am Kniegelenk – Ergebnisse einer deutschlandweiten Umfrage an unfallchirurgischen und orthopädischen Kliniken. Z Orthop 142: 546–552

    Article  Google Scholar 

  24. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64: 460–466

    PubMed  CAS  Google Scholar 

  25. Masi JN, Sell CA, Phan C et al. (2005) Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 236: 140–150

    Article  PubMed  Google Scholar 

  26. Messner K, Maletius W (1996) The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand 67: 165–168

    Article  PubMed  CAS  Google Scholar 

  27. Mitchell N, Shepard N (2004) Healing of articular cartilage in intra-articular fractures in rabbits. Clin Orthop 423: 3–6

    Article  PubMed  Google Scholar 

  28. Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30: 305–311

    Article  PubMed  CAS  Google Scholar 

  29. Potter HG, Linklater JM, Allen AA et al. (1998) Magnetic resonance imaging of articular cartilage of the knee: an evaluation with use of fast spin echo imaging. J Bone Joint Surg Am 80: 1276–1284

    PubMed  CAS  Google Scholar 

  30. Rubenstein JD, Li JG, Majumdar S, Henkelman RM (1997) Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. Am J Roentgenol 169: 1089–1096

    CAS  Google Scholar 

  31. Schmitt F, Grosu D, Mohr C et al. (2004) 3 Tesla MRI: successful results with higher field strengths. Radiologe 44: 31–48

    Article  PubMed  CAS  Google Scholar 

  32. Schröder RJ, Fischbach F, Unterhauser FN et al. (2004) Value of various MR sequences using 1.5 and 3.0 Tesla in analyzing cartilaginous defects of the patella in an animal model. Rofo 176: 1667–1675

    PubMed  Google Scholar 

  33. Shahriaree H (1985) Chondromalcia. Contemp Orthop 11: 27–39

    Google Scholar 

  34. Spahn G, Wittig R, Kahl E et al. (2008) Evaluation of cartilage defects in the knee: validity of clinical, magnetic-resonance-imaging and radiological findings compared with arthroscopy. Unfallchirurg (in press) (epub ahead of print)

  35. von Engelhardt LV, Kraft CN, Pennekamp PH et al. (2007) The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet. Arthroscopy 23: 496–502

    Google Scholar 

  36. Weckbach S, Mendlik T, Horger W et al. (2006) Quantitative assessment of patellar cartilage volume and thickness at 3.0 tesla comparing a 3D-fast low angle shot versus a 3D-true fast imaging with steady-state precession sequence for reproducibility. Invest Radiol 41: 189–197

    Article  PubMed  Google Scholar 

  37. Yoshioka H, Stevens K, Genovese M et al. (2004) Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology 231: 31–38

    Article  PubMed  Google Scholar 

  38. Yoshioka H, Stevens K, Hargreaves BA et al. (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imag 20: 857–864

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.V. von Engelhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Engelhardt, L., Schmitz, A., Burian, B. et al. 3-Tesla-MRT vs. Arthroskopie bei der Diagnostik degenerativer Knorpelschäden des Kniegelenkes. Orthopäde 37, 914–922 (2008). https://doi.org/10.1007/s00132-008-1313-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1313-6

Schlüsselwörter

Keywords

Navigation