Skip to main content
Log in

Aktuelle Behandlung des Knorpelschadens im Patellofemoralgelenk

Current treatment for cartilage damage in the patellofemoral joint

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Gelenkknorpelschäden des Erwachsenen haben praktisch keine Selbstheilungstendenz. Dies macht bei symptomatischen Grad-III/IV-Schäden eine operative Therapie erforderlich. Eine besondere Herausforderung sind dabei Knorpelschäden im patellofemoralen Gelenk, da hier eine komplexe Biomechanik des Gelenks häufig mit Fehlanlagen kombiniert ist. Alle Maßnahmen der Geweberegeneration basieren auf der Rekrutierung von Zellen. Die im Gelenk vorhandenen Synovialzellen lassen sich unter bestimmten mechanischen Bedingungen zu Faserknorpel differenzieren, können aber Defekte nicht suffizient auffüllen. Auch die Verwendung von Knochenmarkzellen zur Knorpelrekonstruktion lässt bisher nur einen mechanisch minderwertigen Faserknorpel (Pridie-Bohrungen, Microfracture, AMIC®) entstehen.

Für eine biomechanisch hochwertige Rekonstruktion der Knorpelschicht stehen gegenwärtig nur vermehrte autologe Chondrozyten aus dem Labor zur Verfügung. Der Einsatz von mesenchymalen Stammzellen ist Gegenstand großer internationaler Forschungsanstrengungen. Erste experimentelle Studien zeigen aber nach einer initialen Knorpelbildung eine signifikante Verknöcherung des Knorpels und damit bisher ein enttäuschendes Resultat. Wesentliche Voraussetzungen für eine erfolgreiche Behandlung von patellofemoralen Knorpelschäden sind die Diagnose von Begleitpathologien, die Auswahl des richtigen knorpelregenerativen Verfahrens, die suffiziente Beseitigung der Grundpathologie und die Anwendung einer standardisierten Rehabilitation.

Abstract

Joint cartilage damage in adults has practically no tendency to self healing. Symptomatic grade III/IV damage requires surgical treatment. There are special challenges involved in cartilage damage in the patellofemoral joint as the complicated biomechanics of the joint is often combined with dysplasia. All tissue regeneration measures are based on the recruitment of cells. The synovial cells available in the joint can be differentiated to fibrous cartilage under certain mechanical conditions; however, they cannot sufficiently fill in defects. Also the use of bone marrow cells for cartilage reconstruction only creates mechanically inferior fibrous cartilage (Pridie drillings, microfracture, AMIC®). Presently only cultivated, autologous chondrocytes from the lab are available for a biomechanically high-quality reconstruction of the cartilage layer.

The application of mesenchymal stem cells is a subject of extensive international research. However, the first experimental studies, after initial formation of cartilage, disappointingly show significant ossification. Essential conditions for a successful treatment of patellofemoral cartilage damage are the diagnosis of accompanying pathological conditions, selection of the right cartilage-regenerating procedure, sufficient removal of the basic pathological defect, and implementation of standardized rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bachmann G, Heinrichs C, Jürgensen I et al. (1997) Comparison of different MRT techniques in the diagnosis of degenerative cartilage diseases. In vitro study of 50 joint specimens of the knee at T1.5. Fortschr Rontgenstr 166: 429–436

    Article  CAS  Google Scholar 

  2. Behrens P (2005) Matrixgekoppelte Mikrofrakturierung. Arthroskopie 18: 193–197

    Article  Google Scholar 

  3. Behrens P, Bruns J, Erggelet C et al. (2002) Stellungnahme der Arbeitsgemeinschaft – Autologe Chondrozyten-Transplantation (ACT) und Tissue Engineering – unter Schirmherrschaft der DGU und DGOOC. Z Orthop: 132–137

  4. Bentley G, Biant LC, Carrington RW et al. (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85(2): 223–30

    Article  PubMed  CAS  Google Scholar 

  5. Biedert RM, Sanchis-Alfonso V (2002) Sources of anterior knee pain. Clin Sports Med 21(3): 335–347

    Article  PubMed  Google Scholar 

  6. Bohndorf K (1996) Injuries at the articulating surfaces of bone (chondral, osteochondral, subchondral fractures and osteochondrosis dissecans). Eur J Radiol 22: 22–29

    Article  PubMed  CAS  Google Scholar 

  7. Brittberg M, Lindahl A, Nilsson A et al. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895

    Article  PubMed  CAS  Google Scholar 

  8. Fulkerson JP (2007) The effects of medialization and anteromedialization of the tibial tubercle on patellofemoral mechanics and kinematics. Am J Sports Med 35(1): 147

    Article  PubMed  Google Scholar 

  9. Hangody L, Kish G, Karpati Z et al. (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5: 262–267

    Article  PubMed  CAS  Google Scholar 

  10. IKDC-Score (1999) International Cartilage Repair Society. ICRS-Newsletter

  11. Knutsen G, Engebretsen L, Ludvigsen TC et al. (2004) Autologous chondrocyte implantation compared with microfracture in the knee A randomized trial. J Bone Joint Surg Am 86(3): 455–464

    PubMed  Google Scholar 

  12. Kreuz PC, Erggelet C, Steinwachs MR et al. (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22(11): 1180–1186

    PubMed  Google Scholar 

  13. Kreuz PC, Steinwachs MR, Erggelet C et al. (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14(11): 1119–1125

    Article  PubMed  CAS  Google Scholar 

  14. Lin YF, Lin JJ, Jan MH et al. (2008) Role of the vastus medialis obliquus in repositioning the patella: a dynamic computed tomography study. Am J Sports Med 36(4): 741–746

    Article  PubMed  Google Scholar 

  15. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64(3): 460–466

    PubMed  CAS  Google Scholar 

  16. Mc Cauley T, Disler D (1998) MRI of articular cartilage. Radiology 209: 629–640

    Google Scholar 

  17. Messner K, Maletius W (1996) The long-term prognosis for severe damage of to weight-bearing cartilage in the knee. Acta Orthop Scand 67: 165–168

    PubMed  CAS  Google Scholar 

  18. Mow VC, Proctor CS, Kelly MA (1989) Biomechanics of articular cartilage. In: Nordin M, Frankel VH (eds): Basic biomechanics of the musculo-skeletal system, 2nd edn. Lea & Febinger, Philadelphia, pp 31–57

  19. Niemeyer P, Kreuz PC, Steinwachs M et al. (2007) Technical note: the „double eye“ technique as a modification of autologous chondrocyte implantation for the treatment of retropatellar cartilage defects. Knee Surg Sports Traumatol Arthrosc 15(12): 1461–1468

    Article  PubMed  Google Scholar 

  20. Niemeyer P, Steinwachs M, Erggelet C et al. (2007) Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects: clinical results referred to defect localisation. Arch Orthop Trauma Surg (Epub)

  21. Peterson L, Brittberg M, Kiviranta I et al. (2002) Autologous chondrocyte transplantation, biomechanics and long-term durability. Am J Sports Med 30(1): 2–12

    PubMed  Google Scholar 

  22. Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Br 41: 618–619

    Google Scholar 

  23. Reginster JY, Deroisy R, Rovati LC et al. (2001) Long-term effects of glucosamine sulphate on osteoartritis progression: a randomised, placebo-controlled clinical trial. Lancet 357: 251–256

    Article  PubMed  CAS  Google Scholar 

  24. Rodrigo JJ, Steadman JR, Silliman JF et al. (1994) Improvement in full thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 7: 109–116

    Google Scholar 

  25. Saris D, Vanlauwe J, Victor J et al. (2007) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Surg Med 36: 235–246

    Google Scholar 

  26. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75(4): 532–553

    PubMed  CAS  Google Scholar 

  27. Steadman JR, Briggs KK, Rodrigo JJ et al. (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5): 477–484

    PubMed  Google Scholar 

  28. Steinwachs MR, Erggelet C, Lahm A et al. (1999) Clinical and cell biology aspects of autologous chondrocytes transplantation. Unfallchirurg 102(11): 855–860

    Article  PubMed  CAS  Google Scholar 

  29. Steinwachs MR, Kreuz PC (2007) Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: A prospective study with a 3-year follow up. Arthroscopy 23: 381–387

    Article  PubMed  Google Scholar 

  30. Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation technique. Injury 39(1): 26–31

    Article  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor hält fest, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Steinwachs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinwachs, M., Kreuz, P., Guhlke-Steinwachs, U. et al. Aktuelle Behandlung des Knorpelschadens im Patellofemoralgelenk. Orthopäde 37, 841–847 (2008). https://doi.org/10.1007/s00132-008-1290-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1290-9

Schlüsselwörter

Keywords

Navigation