Skip to main content

Advertisement

Log in

Knieprothesenkinematik

In-vivo-Analysetechniken und Ergebnisse

TKA kinematics

In vivo techniques and results

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Bisher ist es weitgehend unklar, inwieweit die verschiedenen Prothesentypen die physiologischen Bewegungsmuster des Kniegelenks wiederherstellen können. Ziel ist es, die Fluoroskopie und die funktionelle Magnetresonanztomographie (MRT) als bildgebende In-vivo-Techniken zur Bestimmung der Prothesenkinematik, sowie die Ergebnisse dieser Techniken vorzustellen.

Während es sich bei der Fluoroskopie um eine dynamische Untersuchung mittels eines Bildwandlergeräts handelt, erfolgt bei der funktionellen MRT die Bilddatenakquisition in einem offenen MRT mit dem Knie in verschiedenen Flexionsgraden mit und ohne isometrischer Muskelaktivität. In weiteren Bildverarbeitungsschritten erfolgt dann die Analyse der femoropatellaren und -tibialen Kinematik.

Die unter statischen Bedingungen kernspintomographisch gewonnenen Ergebnisse zeigen eine gute Übereinstimmung mit den fluoroskopischen Beobachtungen unter dynamischen Bedingungen. Unabhängig vom Prothesendesign scheinen „typische“ Bewegungsmuster zu existieren. So kann nach Alloarthroplastik des Kniegelenks (TKA) eine vermehrte Außenrotationsstellung des Femurs im Vergleich zu gesunden Knien festgestellt werden. Im Gegensatz dazu ist das Ausmaß der Außenrotationsbewegung während der Kniebeugung vermindert. Die interindividuellen Bewegungsmuster zeigen eine hohe Varianz, wobei sich zwischen den verschiedenen Prothesengruppen Unterschiede feststellen lassen.

Sowohl Knieprothesenmodelle untereinander als auch Knieprothesen vs. gesunde Knie weisen signifikante Veränderungen der femorotibialen und -patellaren Kinematik auf. Dies kann beispielsweise den vermehrten Polyethylenabrieb bestimmter Modelle oder retropatellare Beschwerden erklären. Die vorgestellten Techniken können in Zukunft zu einer fundierteren Einsicht in die Prothesenkinematik beitragen und somit hoffentlich helfen, dass Prothesendesign und damit auch die Standzeit zu verbessern.

Abstract

Until now it remains less clear to what extent the different types of endoprostheses can simulate the physiological motion pattern of the knee joint. The aim of this study was to present fluoroscopy and functional MRI as well as the results of these in vivo imaging techniques for TKA kinematics.

Videofluoroscopy is a dynamic investigation, analyzing the subjects under fluoroscopic surveillance during different activities. Three-dimensional (3D) kinematics were recovered from the two-dimensional fluoroscopic images using a model-fitting technique. Kinematic analysis with functional MRI was performed in an open MR system at different flexion angles with external loads being applied during imaging. Femoropatellar and femorotibial 3D kinematics were analyzed by image postprocessing.

The findings in healthy knees obtained with functional MRI under static conditions are in good agreement with the fluoroscopic outcome under dynamic conditions. In all investigated TKA in the mean an increased external rotated position of the femur relative to the tibia was observed at full extension, while the amount of external rotation during knee flexion was decreased. Although there was great variability among the individuals, differences were observed between the TKA-groups (e.g. posterior stabilized vs PCL retaining).

Significant changes of femorotibial and femoropatellar kinematics were found in TKA compared to healthy knees, which may lead to early aseptic loosening or increased polyethylene wear The presented techniques and results allow for advanced in vivo diagnostics and may help to improve the design of TKA and to enhance the long-term performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Argenson JN, Scuderi GR, Komistek RD et al. (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38: 277–284

    Article  PubMed  Google Scholar 

  2. Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43: 638–649

    Article  PubMed  CAS  Google Scholar 

  3. Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12: 297–304

    Article  PubMed  CAS  Google Scholar 

  4. Bayley JC, Scott RD, Ewald FC, Holmes GB Jr (1988) Failure of the metal-backed patellar component after total knee replacement. J Bone Joint Surg Am 70: 668–674

    PubMed  CAS  Google Scholar 

  5. Bertin KC, Komistek RD, Dennis DA et al. (2002) In vivo determination of posterior femoral rollback for subjects having a Nexgen posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 14: 1040–1048

    Article  Google Scholar 

  6. Blunn GW, Walker PS, Joshi A, Hardinge K (1991) The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop 273: 253–260

    PubMed  Google Scholar 

  7. Chen EC, Lanovaz JL, Ellis RE (2005) Ligament strain predict knee motion after total joint replacement: a kinematic analysis of the sigma knee. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 8: 770–777

    PubMed  Google Scholar 

  8. Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop 331: 107–117

    Article  PubMed  Google Scholar 

  9. Dennis DA, Komistek RD, Colwell CE Jr et al. (1998) In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop 356: 47–57

    Article  PubMed  Google Scholar 

  10. Dennis DA, Komistek RD, Mahfouz MR et al. (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop 416: 37–57

    Article  PubMed  Google Scholar 

  11. Dennis DA, Komistek RD, Mahfouz MR et al. (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop 428: 180–189

    Article  PubMed  Google Scholar 

  12. Gold GE, Besier TF, Draper CE et al. (2004) Weight-bearing MRI of patellofemoral joint cartilage contact area. J Magn Reson Imag 20: 526–530

    Article  Google Scholar 

  13. Hill PF, Vedi V, Williams A et al. (2000) Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 82: 1196–1198

    Article  PubMed  CAS  Google Scholar 

  14. Hoff WA, Komistek RD, Dennis DA et al. (1998) Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech 13: 455–472

    Article  Google Scholar 

  15. Hsieh YF, Draganich LF, Ho SH, Reider B (2002) The effects of removal and reconstruction of the anterior cruciate ligament on the contact characteristics of the patellofemoral joint. Am J Sports Med 30: 121–127

    PubMed  Google Scholar 

  16. Johal P, Williams A, Wragg P et al. (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‚interventional‘ MRI. J Biomech 38: 269–276

    Article  PubMed  CAS  Google Scholar 

  17. Karrholm J, Jonsson H, Nilsson KG, Soderqvist I (1994) Kinematics of successful knee prostheses during weight-bearing: three-dimensional movements and positions of screw axes in the Tricon-M and Miller-Galante designs. Knee Surg Sports Traumatol Arthrosc 2: 50–59

    Article  PubMed  CAS  Google Scholar 

  18. Komistek RD, Dennis DA, Mabe JA, Walker SA (2000) An in vivo determination of patellofemoral contact positions. Clin Biomech 15: 29–36

    Article  CAS  Google Scholar 

  19. Komistek RD, Dennis DA, Mahfouz MR et al. (2004) In vivo polyethylene bearing mobility is maintained in posterior stabilized total knee arthroplasty. Clin Orthop 428: 207–213

    Article  PubMed  Google Scholar 

  20. Kurosawa H, Walker PS, Abe S et al. (1985) Geometry and motion of the knee for implant and orthotic design. J Biomech 18: 487–499

    Article  PubMed  CAS  Google Scholar 

  21. Kurtz S, Mowat F, Ong K et al. (2005) Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 87: 1487–1497

    Article  PubMed  Google Scholar 

  22. Lee KY, Slavinsky JP, Ries MD et al. (2005) Magnetic resonance imaging of in vivo kinematics after total knee arthroplasty. J Magn Reson Imag 21: 172–178

    Article  Google Scholar 

  23. Lee TQ, Gerken AP, Glaser FE et al. (1997) Patellofemoral joint kinematics and contact pressures in total knee arthroplasty. Clin Orthop 340: 257–266

    Article  PubMed  Google Scholar 

  24. Lee TQ, Yang BY, Sandusky MD, McMahon PJ (2001) The effects of tibial rotation on the patellofemoral joint: assessment of the changes in in situ strain in the peripatellar retinaculum and the patellofemoral contact pressures and areas. J Rehabil Res Dev 38: 463–469

    PubMed  CAS  Google Scholar 

  25. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA (2003) A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imag 22: 1561–1574

    Article  Google Scholar 

  26. McNally EG (2001) Imaging assessment of anterior knee pain and patellar maltracking. Skeletal Radiol 30: 484–495

    Article  PubMed  CAS  Google Scholar 

  27. Most E, Li G, Sultan PG et al. (2005) Kinematic analysis of conventional and high-flexion cruciate-retaining total knee arthroplasties: an in vitro investigation. J Arthroplasty 20: 529–535

    Article  PubMed  Google Scholar 

  28. Nahass B el, Madson MM, Walker PS (1991) Motion of the knee after condylar resurfacing – an in vivo study. J Biomech 24: 1107–1117

    Article  PubMed  Google Scholar 

  29. Nagura T, Otani T, Suda Y et al. (2005) Is high flexion following total knee arthroplasty safe? Evaluation of knee joint loads in the patients during maximal flexion. J Arthoplasty 20: 647–651

    Article  Google Scholar 

  30. Ostermeier S, Buhrnester O, Hurschler C, Stukenborg-Colsman C (2005) Dynamic in vitro measurement of patellar movement after total knee artoplasty: an in vitro study. BMC Musculoscelt Disord 6: 30

    Article  Google Scholar 

  31. Pinskerova V, Iwaki H, Freemann MA (2001) The shapes and relative movements of the femur and tibia in the unloaded cadaveric knee. In: Insall JN, Scott WN (eds) Surgery of the knee. 3rd edn. Churchill Livingstone, New York, pp 255–283

  32. Saari T, Carlsson L, Karlsson J, Karrholm J (2005) Knee kinematics in medial arthrosis. Dynamic radiostereometry during active extension and weight-bearing. J Biomech 38: 285–292

    Article  PubMed  Google Scholar 

  33. Sheehan FT, Zajac FE, Drace JE (1999) In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging. J Biomech Eng 121: 650–656

    Article  PubMed  CAS  Google Scholar 

  34. Smith AJ, Lloyd DG, Wood DJ (2006) A kinematic and kinetic analysis of walking after total knee arthroplasty with and without patella resurfacing. Clin Biomech 21: 379–386

    Article  Google Scholar 

  35. Stiehl JB, Dennis DA, Komistek RD, Keblish PA (2000) In vivo kinematic comparison of posterior cruciate ligament retention or sacrifice with a mobile bearing total knee arthroplasty. Am J Knee Surg 13: 13–18

    PubMed  CAS  Google Scholar 

  36. Uvehammer J, Karrholm J, Brandsson S et al. (2000) In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop 18: 856–864

    CAS  Google Scholar 

  37. Eisenhart-Rothe R von, Siebert M, Bringmann C et al. (2004) A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint. J Biomech 37: 927–934

    Article  Google Scholar 

  38. Eisenhart-Rothe R von, Bringmann C, Siebert M et al. (2004) Femoro-tibial and menisco-tibial translation patterns in patients with unilateral anterior cruciate ligament deficiency – a potential cause of secondary meniscal tears. J Orthop 22: 275–282

    Google Scholar 

  39. Eisenhart-Rothe R von, Vogl T, Englmeier K-H, Graichen H (2007) A new in vivo technique for determination of femoro-tibial and femoro-patellar 3D kinematics in total knee arthroplasty. J Biomech (submitted)

  40. Witonski D, Goraj B (1999) Patellar motion analyzed by kinematic and dynamic axial magnetic resonance imaging in patients with anterior knee pain syndrome. Arch Orthop Trauma Surg 119: 46–49

    Article  PubMed  CAS  Google Scholar 

  41. Yamazaki T, Watanabe T, Nakajima Y et al. (2004) Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imag 23: 602–612

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Danksagungen

Wir möchten unseren Dank der Deutschen Forschungsgemeinschaft sowie der Heinrich und Fritz Riese-Stiftung für Ihre Unterstützung ausdrücken sowie Ulf Henkemeier für seinen Beitrag zu dieser Studie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. von Eisenhart-Rothe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Eisenhart-Rothe, R., Vogl, T., Englmeier, KH. et al. Knieprothesenkinematik. Orthopäde 36, 620–627 (2007). https://doi.org/10.1007/s00132-007-1112-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-007-1112-5

Schlüsselwörter

Keywords

Navigation