Skip to main content
Log in

Einfluss des Schädel-Hirn-Traumas auf Zeitpunkt und Technik der Frakturversorgung

Traumatic brain injury: impact on timing and modality of fracture care

  • Übersicht
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Das Schädel-Hirn-Trauma (SHT) ist bei Patienten <45 Jahren die häufigste Todesursache. Patienten mit schwerem SHT, die das initiale Trauma überleben, sind für sekundäre zerebrale Insulte besonders anfällig. Diese „Sekundärschäden“ sind vorwiegend durch eine transiente Hypotension und/oder Hypoxämie in der frühen Behandlungsphase bedingt und beeinflussen entscheidend die Prognose nach schwerem SHT. Im Rahmen der direkten Traumafolge kommt es zu einer massiven endogenen Entzündungsreaktion im intrakraniellen Kompartment, die die Entwicklung des posttraumatischen Hirnödems und des verzögerten neuronalen Zelltodes zur Folge hat. Diese „überschießende“ neuroinflammatorische Reaktion, deren eigentlicher phylogenetischer Sinn es ist, Schadenszonen abzugrenzen, nekrotisches Gewebe zu entfernen und eine Reparation der entstandenen Defekte zu vermitteln, bestimmt wesentlich das Ausmaß der sekundären Hirnschäden. Es ist deshalb bei Mehrfachverletzungen von entscheidender Bedeutung, diese pathophysiologischen Implikationen zu erkennen und einen iatrogenen, potentiell letalen, „2nd hit“ für das verletzte Gehirn durch ein optimales Management zu vermeiden.

Das bei isolierten Verletzungen übliche Konzept einer sofortigen, definitiven Frakturbehandlung muss bei mehrfachverletzten Patienten mit SHT durch ein modifiziertes Versorgungskonzept im Sinne einer „orthopedic damage control“ mit temporärer externer Frakturfixation ersetzt werden. Hierbei werden biomechanische Gesichtspunkte der Frakturversorgung kompromisslos der Prioriät einer frühzeitigen intensivmedizinischen SHT-Therapie mit dem Ziel der Vermeidung sekundärer zerebraler Insulte untergeordnet.

Die vorliegende Übersichtsarbeit soll den aktuellen Stand der pathophysiologischen Erkenntnisse der neuroinflammatorischen Kaskade nach SHT darstellen und aufzeigen, wie durch ein prioritätenorientiertes Behandlungskonzept der „letalen Entität“ SHT adäquat Rechnung getragen wird.

Abstract

Traumatic brain injury (TBI) represents the major “killing factor” after trauma in young individuals. Those patients who survive the initial injury are highly susceptible to secondary insults to the injured brain which are mainly caused by hypotension and/or hypoxia in the early resuscitative period. Furthermore, a potent inflammatory cascade is initiated within the injured brain which leads to the development of brain edema and delayed neuronal cell death. This profound endogenous neuroinflammatory response after TBI, which is phylogenetically aimed at repairing lesioned tissue and defending the brain from invading pathogens, is in large part responsible for the extent of secondary brain damage and adverse outcome. Thus, the optimal management of the multiply injured patient, based on a thorough understanding of the pathophysiological alterations after TBI, should avoid an iatrogenic “second hit” which may be devastating to the injured brain.

The standard approach of “early total care” for isolated fractures should be strictly avoided in brain-injured patients in favor of an “orthopedic damage control” concept with temporary external fixation of long bone fractures and priority given to early transfer to intensive care.

The present review provides an up-to-date overview on the neuroinflammatory pathophysiology of brain injury and its implications for an optimized concept of fracture care in TBI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Albrecht T, von Schlippenbach J, Stahel PF, Ertel W, Wolf KJ (2004) Die Rolle der Ganzkörper-Spiral-CT bei der Primärdiagnostik polytraumatisierter Patienten: Vergleich mit konventioneller Radiographie und Abdomensonographie. Fortschr Röntgenstr (RöFo) 176: 1142–1150

  2. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744

    Article  PubMed  Google Scholar 

  3. American College of Surgeons Committee on Trauma (2004) Advanced Trauma Life Support (ATLS) for Doctors. American College of Surgeons Committee on Trauma, 7th edn. Chicago, IL

  4. Anglen JO, Luber K, Park T (2003) The effect of femoral nailing on cerebral perfusion pressure in head-injured patients. J Trauma 54: 1166–1170

    PubMed  Google Scholar 

  5. Barnum SR (2002) Complement in central nervous system inflammation. Immunol Res 26: 7–13

    Article  PubMed  Google Scholar 

  6. Bayir H, Clark RS, Kochanek PM (2003) Promising strategies to minimize secondary brain injury after head trauma. Crit Care Med 31: 112–117

    Article  Google Scholar 

  7. Bhandari M, Guyatt GH, Khera V, Kulkarni AV, Sprague S, Schemitsch EH (2003) Operative management of lower extremity fractures in patients with head injuries. Clin Orthop 407: 187–198

    PubMed  Google Scholar 

  8. Bone LB, Johnson KD, Weigelt J, Scheinberg R (1989) Early versus delayed stabilization of femoral fractures: a prospective randomized study. J Bone Joint Surg Am 71: 336–340

    PubMed  Google Scholar 

  9. Bone R (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med 24: 163–172

    Article  PubMed  Google Scholar 

  10. Bouillon B, Kanz KG, Lackner CK, Mutschler W, Sturm J (2004) Die Bedeutung des Advanced Trauma Life Support (ATLS) im Schockraum. Unfallchirurg 107: 844–850

    Article  PubMed  Google Scholar 

  11. Bouillon B, Raum M, Fach H, Buchheister B, Lefering R, Menzel J, Klug N (1999) The incidence and outcome of severe brain trauma: design and first results of an epidemiological study in an urban area. Restol Neurol Neurosci 14: 85–92

    Google Scholar 

  12. Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24: 133–150

    Article  PubMed  Google Scholar 

  13. Bullock MR, Lyeth BG, Muizelaar JP (1999) Current status of neuroprotection trials for traumatic brain injury: lessons from animal models and clinical studies. Neurosurgery 45: 207–217

    Article  PubMed  Google Scholar 

  14. Chesnut RM, Marshall LF, Klauber MR et al. (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34: 216–222

    PubMed  Google Scholar 

  15. Chesnut RM, Marshall SB, Piek J, Blunt BA, Klauber MR, Marshall LF (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir (Wien) 59 [Suppl]: 121–125

    Google Scholar 

  16. Dutton RP, McCunn M (2003) Traumatic brain injury. Curr Opin Crit Care 9: 503–509

    Article  PubMed  Google Scholar 

  17. Eisenberg HM, Gary HE Jr, Aldrich EF et al. (1990) Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg 73: 688–698

    PubMed  Google Scholar 

  18. Elf K, Nilsson P, Enblad P (2003) Prevention of secondary insults in neurointensive care of traumatic brain injury. Eur J Trauma 29: 74–80

    Article  Google Scholar 

  19. Elward K, Gasque P (2003) „Eat me“ and „don’t eat me“ signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol Immunol 40: 85–94

    Article  PubMed  Google Scholar 

  20. Ember JA, Jagels MA, Hugli TE (1998) Anaphylatoxins and biological responses. In: Volanakis JE, Frank MM (eds) The human complement system in health and disease. Dekker, New York, pp 241–284

  21. Fainardi E, Chieregato A, Antonelli V, Fagioli L, Servadei F (2004) Time course of CT evolution in traumatic subarachnoid haemorrhage: a study of 141 patients. Acta Neurochir (Wien) 146: 257–263

    Article  Google Scholar 

  22. Felderhoff-Mueser U, Schmidt OI, Oberholzer A, Bührer C, Stahel PF (2005) IL-18: a „key player“ in neuroinflammation and neurodegeneration? Trends Neurosci (in press)

  23. Finfer SR, Cohen J (2001) Severe traumatic brain injury. Resuscitation 48: 77–90

    Article  PubMed  Google Scholar 

  24. Firsching R, Woischneck D (2001) Present status of neurosurgical trauma in Germany. World J Surg 25: 1221–1223

    Article  PubMed  Google Scholar 

  25. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115: 4–18

    Article  PubMed  Google Scholar 

  26. Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49: 171–186

    PubMed  Google Scholar 

  27. Ghajar J (2000) Traumatic brain injury. Lancet 356: 923–929

    Article  PubMed  Google Scholar 

  28. Ghirnikar RS, Lee YL, Eng LF (1998) Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res 23: 329–340

    Article  PubMed  Google Scholar 

  29. Giannoudis PV, Pape HC, Cohen AP, Krettek C, Smith RM (2002) Systemic effects of femoral nailing: from Küntscher to the immune reactivity era. Clin Orthop 404: 378–386

    PubMed  Google Scholar 

  30. Gibson JMC (1960) The management of the patient with a fractured femur and head injury. J Bone Joint Surg Br 42: 425–431

    Google Scholar 

  31. Glenn JN, Miner ME, Peltier LF (2004) The treatment of fractures of the femur in patients with head injuries. Clin Orthop 422: 142–144

    PubMed  Google Scholar 

  32. Grotz MRW, Giannoudis PV, Pape HC, Allami MK, Dinopoulos H, Krettek C (2004) Traumatic brain injury and stabilisation of long bone fractures: an update. Injury 35: 1077–1086

    Article  PubMed  Google Scholar 

  33. Hammond FM, Hart T, Bushnik T, Corrigan JD, Sasser H (2004) Change and predictors of change in communication, cognition, and social function between 1 and 5 years after traumatic brain injury. J Head Trauma Rehabil 19: 314–328

    PubMed  Google Scholar 

  34. Harwood PJ, Giannoudis PV, van Griensven M, Krettek C, Pape HC (2005) Alterations in the systemic inflammatory response after early total care and damage control procedures for femoral shaft fracture in severely injured patients. J Trauma 58: 446–454

    PubMed  Google Scholar 

  35. Haviland DL, McCoy RL, Whitehead WT et al. (1995) Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung. J Immunol 154: 1861–1869

    PubMed  Google Scholar 

  36. Heinzelmann M, Imhof HG, Trentz O (2004) Schockraummanagement bei polytraumatisierten Patienten mit Schädel-Hirn-Verletzungen: eine systematische Literaturübersicht. Unfallchirurg 107: 871–880

    Article  PubMed  Google Scholar 

  37. Holmin S, Soderlund J, Biberfeld P, Mathiesen T (1998) Intracerebral inflammation after human brain contusion. Neurosurgery 42: 291–298

    Article  PubMed  Google Scholar 

  38. Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci 18: 83–88

    Article  PubMed  Google Scholar 

  39. Jennett B, Teasdale G, Galbraith S et al. (1979) Prognosis in patients with severe head injury. Acta Neurochir (Wien) 28 [Suppl]: 149–152

    Google Scholar 

  40. Juul N, Morris GF, Marshall SB, Marshall LF (2000) Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. J Neurosurg 92: 1–6

    Google Scholar 

  41. Kanz KG, Korner M, Linsenmaier U et al. (2004) Prioritätenorientiertes Schockraummanagement unter Integration des Mehrschichtspiralcomputertomographen. Unfallchirurg 107: 937–944

    Article  PubMed  Google Scholar 

  42. Keel M, Trentz O (2005) Pathophysiology of polytrauma. Injury 36: 691–709

    Article  PubMed  Google Scholar 

  43. Kennedy DW, Gentleman D (2001) The ATLS course — a survey of 228 ATLS providers. Emerg Med J 18: 55–58

    Article  PubMed  Google Scholar 

  44. Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, Morganti-Kossmann C (1995) Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4: 311–317

    PubMed  Google Scholar 

  45. Kossmann T, Stahel PF (2001) Closed Head Injury. In: Bland KI, Sarr MG (eds) The practice of general surgery. Saunders, Philadelphia, pp 101–108

  46. Krettek C, Simon RG, Tscherne H (1998) Management priorities in patients with polytrauma. Langenbecks Arch Surg 383: 220–227

    Article  PubMed  Google Scholar 

  47. Lehmann U, Rickels E, Krettek C (2001) Polytrauma mit Schädel-Hirn-Trauma: Primär definitive operative Versorgung der langen Röhrenknochen? Unfallchirurg 104: 196–209

    Article  PubMed  Google Scholar 

  48. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK (2001) The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 24: 169–181

    Article  PubMed  Google Scholar 

  49. Lubillo S, Bolanos J, Cardenosa JA, Robaina F, Ponce P, Morera J, Manzano JL (2000) Diffuse axonal injury with or without an evacuated intracranial hematoma in head-injured patients: are they different lesions? Acta Neurochir 76 [Suppl]: 415–418

    Google Scholar 

  50. Maas AI, Dearden M, Servadei F, Stocchetti N, Unterberg A (2000) Current recommendations for neurotrauma. Curr Opin Crit Care 6: 281–292

    Article  PubMed  Google Scholar 

  51. Marshall LF (2000) Head injury: recent past, present, and future. Neurosurgery 47: 546–561

    Article  PubMed  Google Scholar 

  52. Marshall LF, Marshall SB, Klauber MR et al. (1992) The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma 9 [Suppl 1]: 287–292

  53. Masson F, Thicoipe M, Aye P et al. (2001) Epidemiology of severe brain injuries: a prospective population-based study. J Trauma 51: 481–489

    PubMed  Google Scholar 

  54. Max JE, Robertson BA, Lansing AE (2001) The phenomenon of personality change due to traumatic brain injury in children and adolescents. J Neuropsychiatry Clin Neurosci 13: 161–170

    PubMed  Google Scholar 

  55. McArthur DL, Chute DJ, Villablance JP (2004) Moderate and severe traumatic brain injury: epidemiologic, imaging, and neuropathologic perspectives. Brain Pathol 14: 185–194

    PubMed  Google Scholar 

  56. Mendelow AD, Teasdale G, Jennett B, Bryden J, Hessett C, Murray G (1983) Risks of intracranial haematoma in head injured adults. Br Med J 287: 1173–1176

    Google Scholar 

  57. Morganti-Kossman MC, Lenzlinger PM, Hans V et al. (1997) Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 2: 133–136

    Article  PubMed  Google Scholar 

  58. Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T (2001) Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16: 165–177

    PubMed  Google Scholar 

  59. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8: 101–105

    Article  PubMed  Google Scholar 

  60. Morley J, Marsh S, Drakoulakis E, Pape HC, Giannoudis PV (2005) Does traumatic brain injury result in accelerated fracture healing? Injury 36: 363–368

    Article  PubMed  Google Scholar 

  61. Moskopp D (2004) Kein Nutzen für ZNS-Verletzte durch Corticoidbehandlung: Eine Kritik an der CRASH Studie. Dtsch Aerzteblatt 47: 2691–2694

    Google Scholar 

  62. Mousavi M, Kolonja A, Schaden E, Gabler C, Ehteshami JR, Vecsei V (2001) Intracranial pressure-alterations during controlled intramedullary reaming of femoral fractures: an animal study. Injury 32: 679–682

    Article  PubMed  Google Scholar 

  63. Murray GD, Teasdale GM, Braakman R et al. (1999) The European Brain Injury Consortium survey of head injuries. Acta Neurochir (Wien) 141: 223–236

    Article  Google Scholar 

  64. Narayan RK, Michel ME, Ansell B et al. (2002) Clinical trials in head injury. J Neurotrauma 19: 503–557

    Article  PubMed  Google Scholar 

  65. Narayan RK, Wilberger J, Povlishock JT (1996) Neurotrauma. McGraw-Hill, New York, pp 1600

  66. Nataf S, Stahel PF, Davoust N, Barnum SR (1999) Complement anaphylatoxin receptors on neurons: new tricks for old receptors? Trends Neurosci 22: 397–402

    Article  PubMed  Google Scholar 

  67. Neugebauer E, Hensler T, Rose S et al. (2000) Das schwere Schädel-Hirn-Trauma bei Mehrfachverletzten: Eine Bestandesaufnahme zur Interaktion lokaler und systemischer Mediatorwirkungen. Unfallchirurg 103: 122–131

    Article  PubMed  Google Scholar 

  68. Nowotarski PJ, Turen CH, Brumback RJ, Scarboro JM (2000) Conversion of external fixation to intramedullary nailing for fractures of the shaft of the femur in multiply injured patients. J Bone Joint Surg Am 82: 781–788

    Article  PubMed  Google Scholar 

  69. Pape HC, Hildebrand F, Pertschy S, Zelle B, Garapati R, Grimme K, Krettek C (2004) Changes in the management of femoral shaft fractures in polytrauma patients: from early total care to damage control orthopedic surgery. J Orthop Trauma 18 [Suppl]: 13–22

    Article  Google Scholar 

  70. Plets C (1989) Arterial hypertension in neurosurgical emergencies. Am J Cardiol 63: 40–42

    Article  PubMed  Google Scholar 

  71. Poca MA, Sahuquillo J, Baguena M, Pedraza S, Gracia RM, Rubio E (1998) Incidence of intracranial hypertension after severe head injury: a prospective study using the Traumatic Coma Data Bank classification. Acta Neurochir 71 [Suppl]: 27–30

    Google Scholar 

  72. Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17: 927–938

    PubMed  Google Scholar 

  73. Ransohoff RM, Tani M (1998) Do chemokines mediate leukocyte recruitment in post-traumatic CNS inflammation? Trends Neurosci 21: 154–159

    Article  PubMed  Google Scholar 

  74. Redl H, Gasser H, Schlag G, Marzi I (1993) Involvement of oxygen radicals in shock related cell injury. Br Med Bull 49: 556–565

    PubMed  Google Scholar 

  75. Reed AR, Welsh DG (2002) Secondary injury in traumatic brain injury patients: A prospective study. S Afr Med J 92: 221–224

    PubMed  Google Scholar 

  76. Reinert MM, Bullock R (1999) Clinical trials in head injury. Neurol Res 21: 330–338

    PubMed  Google Scholar 

  77. Roberts I, Yates D, Sandercock P et al. (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364: 1321–1328

    Article  PubMed  Google Scholar 

  78. Rosomoff HL, Kochanek PM, Clark R et al. (1996) Resuscitation from severe brain trauma. Crit Care Med 24: 48–56

    Article  Google Scholar 

  79. Royo NC, Shimizu S, Schouten JW, Stover JF, McIntosh TK (2003) Pharmacology of traumatic brain injury. Curr Opin Pharmacol 3: 27–32

    Article  PubMed  Google Scholar 

  80. Salmond CH, Sahakian BJ (2005) Cognitive outcome in traumatic brain injury survivors. Curr Opin Crit Care 11: 111–116

    Article  PubMed  Google Scholar 

  81. Sauerland S, Maegerle M (2004) A CRASH landing in severe head injury. Lancet 364: 1291–1292

    Article  PubMed  Google Scholar 

  82. Scalea TM, Boswell SA, Scott JD, Mitchell KA, Kramer ME, Pollak AN (2000) External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femur fractures: damage control orthopedics. J Trauma 48: 613–621

    PubMed  Google Scholar 

  83. Schaan M, Jaschke H, Boszczyk B (2002) Predictors of outcome in head injury: proposal of a new scaling system. J Trauma 52: 667–674

    PubMed  Google Scholar 

  84. Schmidt OI, Heyde CE, Ertel W, Stahel PF (2005) Closed head injury: an inflammatory disease? Brain Res Rev 48: 388–399

    Article  PubMed  Google Scholar 

  85. Schmidt OI, Infanger M, Heyde CE, Ertel W, Stahel PF (2004) The role of neuroinflammation in traumatic brain injury. Eur J Trauma 30: 135–149

    Article  Google Scholar 

  86. Schoettle RJ, Kochanek PM, Magargee MJ, Uhl MW, Nemoto EM (1990) Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats. J Neurotrauma 7: 207–217

    PubMed  Google Scholar 

  87. Schwab CW (2004) Damage control at the start of 21st century. Injury 35: 639–641

    Article  PubMed  Google Scholar 

  88. Servadei F, Teasdale G, Merry G (2001) Defining acute mild head injury in adults: a proposal based on prognostic factors, diagnosis, and management. J Neurotrauma 18: 657–664

    Article  PubMed  Google Scholar 

  89. Sherwood ER, Prough DS (2000) Interleukin-8, neuroinflammation, and secondary brain injury. Crit Care Med 28: 1221–1223

    Article  PubMed  Google Scholar 

  90. Shohami E, Beit-Yannai E, Horowitz M, Kohen R (1997) Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab 17: 1007–1019

    Article  PubMed  Google Scholar 

  91. Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10: 119–130

    Article  PubMed  Google Scholar 

  92. Stahel PF, Ertel W (2004) Pathophysiologie des Traumas. In: Rüter A, Trentz O, Wagner M (eds) Unfallchirurgie, Urban & Fischer, München, pp 1–21

  93. Stahel PF, Heyde CE, Ertel W (2005) Current concepts of polytrauma management. Eur J Trauma 31: 200–211

    Google Scholar 

  94. Stahel PF, Morganti-Kossmann MC, Kossmann T (1998) The role of the complement system in traumatic brain injury. Brain Res Rev 27: 243–256

    Article  PubMed  Google Scholar 

  95. Sternbach GL (2000) The Glasgow coma scale. J Emerg Med 19: 67–71

    Article  PubMed  Google Scholar 

  96. Stocchetti N, Pagan F, Calappi E et al. (2004) Inaccurate early assessment of neurological severity in head injury. J Neurotrauma 21: 1131–1140

    Article  PubMed  Google Scholar 

  97. Stocchetti N, Penny KI, Dearden M et al. (2001) Intensive care management of head-injured patients in Europe: a survey from the European brain injury consortium. Intensive Care Med 27: 400–406

    Article  PubMed  Google Scholar 

  98. Stocker R, Kossmann T, Imhof HG (1996) Das Neurotrauma: aktuelles Behandlungskonzept. Unfallchirurg 99: 806–810

    Article  PubMed  Google Scholar 

  99. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2: 81–84

    Article  PubMed  Google Scholar 

  100. Teasdale G, Jennett B, Murray L, Murray G (1983) Glasgow coma scale: to sum or not to sum. Lancet 2: 678

    Article  Google Scholar 

  101. Townsend RN, Lheureau T, Protech J, Riemer B, Simon D (1998) Timing fracture repair in patients with severe brain injury (Glasgow Coma Scale score <9). J Trauma 44: 977–982

    PubMed  Google Scholar 

  102. Trembovler V, Beit-Yannai E, Younis F, Gallily R, Horowitz M, Shohami E (1999) Antioxidants attenuate acute toxicity of tumor necrosis factor-alpha induced by brain injury in rat. J Interferon Cytokine Res 19: 791–795

    Article  PubMed  Google Scholar 

  103. Trentz O (2000) Polytrauma: pathophysiology, priorities, and management. In: Rüedi TP, Murphy WM (eds) AO principles of fracture management. Thieme, Stuttgart New York, pp 665–677

  104. Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129: 1021–1029

    Article  PubMed  Google Scholar 

  105. van Beek J, Elward K, Gasque P (2003) Activation of complement in the central nervous system: Roles in neurodegeneration and neuroprotection. Ann NY Acad Sci 992: 56–71

    PubMed  Google Scholar 

  106. Vollmer DG (1993) Prognosis and outcome of severe head injury. In: Cooper PR (ed) Head injury. Williams & Wilkins, Baltimore, MA, pp 553–581

  107. Wahl M, Schilling L, Unterberg A, Baethmann A (1993) Mediators of vascular and parenchymal mechanisms in secondary brain damage. Acta Neurochir Suppl (Wien) 57: 64–72

    Google Scholar 

  108. Walia S, Sutcliffe AJ (2002) The relationship between blood glucose, mean arterial pressure and outcome after severe head injury: an observational study. Injury 33: 339–344

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Stahel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahel, P.F., Ertel, W. & Heyde, C.E. Einfluss des Schädel-Hirn-Traumas auf Zeitpunkt und Technik der Frakturversorgung. Orthopäde 34, 852–864 (2005). https://doi.org/10.1007/s00132-005-0844-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-005-0844-3

Schlüsselwörter

Keywords

Navigation