Skip to main content
Log in

Molekulare Charakterisierung von gezüchteten humanen dreidimensionalen Chondrozytentransplantaten

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die Transplantation von Chondrozyten in resorbierbaren Polymervliesen ist eine vielversprechende Methode zur Behandlung von Knorpeldefekten. Die Züchtung dieser künstlichen Knorpelgewebe ist durch eine Dedifferenzierung im Monolayer, dem Einsatz von abbaubaren Matrizen und Polymeren und der erneuten Expression chondrozytärer Markergene in dreidimensionaler (3D-)Kultur gekennzeichnet.

Das Ziel der vorliegenden Studie war die molekulare Charakterisierung von phänotypischen Veränderungen während des autologen Knorpel-Tissue-engineering. Humane artikuläre Chondrozyten wurden isoliert, mit humanem Serum bis zur Passage 3 expandiert und in humanem Fibrinogen und Polyglactin/Polydioxanon-Vliese eingebettet, um bis zu 4 Wochen 3D kultiviert zu werden. Die Dedifferenzierung im Monolayer und die Ausbildung von Knorpelgewebe in vitro und nach subkutaner Transplantation in Nacktmäuse wurde mittels Expressionsanalyse chondrozytärer Gene und anhand histologischer und immunhistochemischer Verfahren untersucht. Die Vermehrung der Chondrozyten mit humanem Serum führte zur Induktion von Typ-I- und Typ-III-Kollagen, während die knorpelspezifischen Gene Typ-II-Kollagen, "Cartilage-Oligomeric-Matrix-Protein", "Cartilage-Link-Protein" und Aggrecan reprimiert wurden, um erneut in 3D-Kultur in Polyglactin/Polydioxanon-Vliesen induziert zu werden. Subkutane Transplantationen im Mausmodell dokumentierten die Synthese von Proteoglykan und knorpelspezifischem Typ-II-Kollagen. Das 3D-Anordnen von humanen Gelenkchondrozyten in resorbierbaren Polyglactin/Polydioxanon-Vliesen unterstützt die chondrogene Differenzierung und die Bildung einer hyalinähnlichen Knorpelmatrix in vitro und in vivo.

Abstract

Three-dimensional arrangement and subsequent transplantation of chondrocytic cells in resorbable polymers has been shown to be a promising technique for the treatment of cartilaginous defects. Engineering of artificial cartilage tissue includes dedifferentiation of chondrocytes in monolayer culture, the use of biodegradable matrices and polymer scaffolds, and re-expression of chondrocytic marker genes in three-dimensional culture.

The aim of this study was to characterize molecularly the phenotypic changes occurring with autologous cartilage tissue engineering. Human articular chondrocytes were isolated, cultured in medium containing human serum, and expanded up to passage 3. Chondrocytes were embedded in human fibrinogen and in polyglactin-polydioxanon fleeces and cultured three-dimensionally up to 4 weeks. Dedifferentiation of chondrocytes in monolayers and formation of cartilage tissue in vitro or after subcutaneous transplantation into nude mice was assessed by gene expression analysis of typical chondrocytic genes, histology, and immunohistochemistry. The expansion of chondrocytes with human serum resulted in the induction of type I and type III collagens, whereas cartilage-specific type II collagen, cartilage oligomeric matrix protein, cartilage link protein, and aggrecan were repressed and induced again after three-dimensional arrangement of chondrocytes in polyglactin-polydioxanon. Transplantation experiments documented the synthesis of proteoglycan and cartilage-specific type II collagen in vivo. Three-dimensional arrangement of human articular chondrocytes in resorbable polyglactin-polydioxanon fleeces supports chondrogenic differentiation and the formation of a hyaline-like cartilaginous matrix in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2a–d.
Abb. 3.
Abb. 4a–d.

Literatur

  1. User Bulletin 2 (1997) ABI Prism 7700 sequence detection system. Applied Biosystems, pp 1–36

  2. Stellungnahme der Arbeitsgemeinschaft "Autologe Chondrozyten-Transplantation (ACT) und Tissue Engineering" unter Schirmherrschaft der DGU und DGOOC.(2002) http://www.thieme.de/zfo/02_02/ortho_16.html

  3. Aigner J, Tegeler J, Hutzler P et al. (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42: 172–181

    Google Scholar 

  4. Amiel D, Coutts RD, Abel M, Stewart W, Harwood F, Akeson WH (1985) Rib perichondrial grafts for the repair of full-thickness articular-cartilage defects. A morphological and biochemical study in rabbits. J Bone Joint Surg Am 67: 911–920

    Google Scholar 

  5. Anders S, Schaumburger J, Grifka J (2001) Surgical intra-articular interventions in arthrosis. Orthopade 30: 866–880

    Google Scholar 

  6. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224

    Google Scholar 

  7. Benz K, Breit S, Lukoschek M, Mau H, Richter W (2002) Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 293: 284–292

    Google Scholar 

  8. Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, Freisinger P (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 212: 97–104

    Google Scholar 

  9. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895

    Google Scholar 

  10. Brun P, Abatangelo G, Radice M, Zacchi V, Guidolin D, Daga Gordini D, Cortivo R (1999) Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J Biomed Mater Res 46: 337–346

    Google Scholar 

  11. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15: 532–537

    Google Scholar 

  12. Dell'Accio F, De Bari C, Luyten FP (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44: 1608–1619

    Google Scholar 

  13. Erggelet C, Sittinger M, Lahm A (2003) The arthroscopic implantation of autologous chondrocytes for the treatment of full thickness cartilage defects of the knee joint. Arthroscopy 19: 108–110

    Google Scholar 

  14. Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW (2003) Early events in cartilage repair after subchondral bone microfracture. Clin Orthop 2003: 215–227

  15. Gruber R, Sittinger M, Bujia J (1996) In vitro cultivation of human chondrocytes using autologous human serum supplemented culture medium: minimizing possible risk of infection with pathogens of prion diseases. Laryngorhinootologie 75: 105–108

    Google Scholar 

  16. Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269

    Google Scholar 

  17. Haisch A, Schultz O, Perka C, Jahnke V, Burmester GR, Sittinger M (1996) Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carriers. HNO 44: 624–629

    Google Scholar 

  18. Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, Lust G (1994) Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 12: 485–497

    Google Scholar 

  19. Hoikka VE, Jaroma HJ, Ritsila VA (1990) Reconstruction of the patellar articulation with periosteal grafts. 4-year follow-up of 13 cases. Acta Orthop Scand 61: 36–39

    Google Scholar 

  20. Kolettas E, Buluwela L, Bayliss MT, Muir HI (1995) Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J Cell Sci 108: 1991–1999

    Google Scholar 

  21. Liu H, Lee YW, Dean MF (1998) Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim Biophys Acta 1425: 505–515

    Google Scholar 

  22. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64: 460–466

    Google Scholar 

  23. Neame PJ, Barry FP (1994) The link proteins. Exs 70: 53–72

    Google Scholar 

  24. O'Brien MC, Bolton WE (1995) Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry. Cytometry 19: 243–255

    Google Scholar 

  25. Ochi M, Sumen Y, Jitsuiki J, Ikuta Y (1995) Allogeneic deep frozen meniscal graft for repair of osteochondral defects in the knee joint. Arch Orthop Trauma Surg 114: 260–266

    Google Scholar 

  26. Perka C, Schultz O, Sittinger M, Zippel H (2000) Chondrocyte transplantation in PGLA/polydioxanone fleece. Orthopade 29: 112–119

    Google Scholar 

  27. Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, Eavey RD, Vacanti CA (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg 103: 1111–1119

    Google Scholar 

  28. Rotter N, Aigner J, Naumann A, Planck H, Hammer C, Burmester G, Sittinger M (1998) Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage. J Biomed Mater Res 42: 347–356

    Google Scholar 

  29. Schottle PB, Oettl GM, Agneskirchner JD, Imhoff AB (2001) Operative therapy of osteochondral lesions of the talus with autologous cartilage-bone transplantation. Orthopade 30: 53–58

    Google Scholar 

  30. Sittinger M (1995) Tissue engineering: artificial tissue replacement containing vital components. Laryngorhinootologie 74: 695–699

    Google Scholar 

  31. Thiesen F, Barnewitz D, Zimmermann J, Klein C, Larcher Y, Günther M, Sittinger M, Wilke I (2000) Tissue Engineering—Eine neue Methode der Reparation von defekten Gelenkknorpel bei Pferden. Veterinärspiegel 2: 134–136

  32. Velikonja NK, Wozniak G, Malicev E, Knezevic M, Jeras M (2001) Protein synthesis of human articular chondrocytes cultured in vitro for autologous transplantation. Pflugers Arch 442: 169–170

    Google Scholar 

  33. Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 4: 429–444

    Google Scholar 

  34. Zaucke F, Dinser R, Maurer P, Paulsson M (2001) Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem J 358: 17–24

    Google Scholar 

Download references

Danksagung

Diese Studie wurde unterstützt von der Deutschen Forschungsgemeinschaft (DFG BU 445/5–4) und vom Senat von Berlin (B002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kaps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaps, C., Fuchs, S., Endres, M. et al. Molekulare Charakterisierung von gezüchteten humanen dreidimensionalen Chondrozytentransplantaten. Orthopäde 33, 76–85 (2004). https://doi.org/10.1007/s00132-003-0505-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-003-0505-3

Schlüsselwörter

Keywords

Navigation