Skip to main content
Log in

NGS zur Selektion innovativer Therapien – Was bringt das?

NGS for selecting innovative therapies—what are the benefits?

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Next Generation Sequencing (NGS) beschreibt eine Technologie zur Sequenzierung des gesamten Genoms, Exoms und Transkriptoms und hat die genomische Forschung revolutioniert. Im Vergleich zur Sanger-Sequenzierung kann nun ein komplettes menschliches Genom binnen eines Tages sequenziert werden. Die Ergebnisse können mit menschlichen Referenzgenomen abgeglichen werden. Durch Fragmentation der DNA, Adaption mittels Adapter an die Bruchstücke und Amplifikation der Fragmente erfolgt eine bioinformatische Analyse, die in Form eines DNA-Chips gespeichert und sequenziert wird. NGS findet viele Anwendungsbereiche, vor allem in der genetischen, mikrobiologischen und onkologischen Forschung, und hat sich bisher noch nicht flächendeckend im klinischen Alltag etabliert. In der Gynäkologie wird NGS insbesondere in der nichtinvasiven Pränataldiagnostik (NIPT), in der Reproduktionsmedizin und in der Onkologie eingesetzt.

Abstract

Next generation sequencing (NGS) describes a technology for sequencing the entire human genome, exome and transcriptome and has revolutionized genomic research. In comparison to Sanger sequencing NGS is able to sequence a whole human genome within 1 day. The results can be aligned with reference human genomes. Through DNA fragmentation, ligation of adaptors on the ends of fragments and amplification of the fragments a bioinformatics analysis is carried out, which is stored in the form of a chip and sequenced. The NGS can be used in multiple applications, especially in genetic, microbiological and oncologic research and has not yet become comprehensively established within the clinical routine. In obstetrics and gynecology, NGS is especially used in noninvasive prenatal testing (NIPT), reproductive medicine and oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    CAS  PubMed  Google Scholar 

  2. Hall JM et al (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250(4988):1684–1689

    CAS  PubMed  Google Scholar 

  3. McPherson JD et al (2001) A physical map of the human genome. Nature 409(6822):934–941

    CAS  PubMed  Google Scholar 

  4. Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    CAS  PubMed  Google Scholar 

  5. Hartkopf AD et al (2019) Update breast cancer 2019 part 1 - implementation of study results of novel study designs in clinical practice in patients with early breast cancer. Geburtshilfe Frauenheilkd 79(3):256–267

    PubMed  PubMed Central  Google Scholar 

  6. Janni W et al (2019) Update breast cancer 2019 part 2 - implementation of novel diagnostics and therapeutics in advanced breast cancer patients in clinical practice. Geburtshilfe Frauenheilkd 79(3):268–280

    PubMed  PubMed Central  Google Scholar 

  7. Kolberg HC et al (2019) Update breast cancer 2019 part 3 - current developments in early breast cancer: review and critical assessment by an international expert panel. Geburtshilfe Frauenheilkd 79(5):470–482

    PubMed  PubMed Central  Google Scholar 

  8. Schutz F et al (2019) Update breast cancer 2019 part 4 - diagnostic and therapeutic challenges of new, personalised therapies for patients with early breast cancer. Geburtshilfe Frauenheilkd 79(10):1079–1089

    PubMed  PubMed Central  Google Scholar 

  9. Welslau M et al (2019) Update breast cancer 2019 part 5 - diagnostic and therapeutic challenges of new, personalised therapies in patients with advanced breast cancer. Geburtshilfe Frauenheilkd 79(10):1090–1099

    PubMed  PubMed Central  Google Scholar 

  10. Luftner D et al (2020) Update breast cancer 2020 part 2 - advanced breast cancer: new treatments and implementation of therapies with companion diagnostics. Geburtshilfe Frauenheilkd 80(4):391–398

    PubMed  PubMed Central  Google Scholar 

  11. Schneeweiss A et al (2020) Update breast cancer 2020 part 1 - early breast cancer: consolidation of knowledge about known therapies. Geburtshilfe Frauenheilkd 80(3):277–287

    PubMed  PubMed Central  Google Scholar 

  12. Tutt ANJ et al (2015) OlympiA: A randomized phase III trial of olaparib as adjuvant therapy in patients with high-risk HER2-negative breast cancer (BC) and a germline BRCA1/2 mutation (gBRCAm). J Clin Oncol 33(15_suppl):TPS1109–TPS1109

    Google Scholar 

  13. André F et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl J Med 380(20):1929–1940

    PubMed  Google Scholar 

  14. André T et al (2020) Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N Engl J Med 383(23):2207–2218

    PubMed  Google Scholar 

  15. Drilon A et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    CAS  PubMed  Google Scholar 

  18. Poptsova MS et al (2014) Non-random DNA fragmentation in next-generation sequencing. Sci Rep 4:4532

    PubMed  PubMed Central  Google Scholar 

  19. Xiao T, Zhou W (2020) The third generation sequencing: the advanced approach to genetic diseases. Transl Pediatr 9(2):163–173

    PubMed  PubMed Central  Google Scholar 

  20. Petersen LM et al (2019) Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing. J Clin Microbiol. https://doi.org/10.1128/JCM.01315-19

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schwarze K et al (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20(10):1122–1130

    PubMed  Google Scholar 

  22. Timms KM et al (2014) Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res 16(6):475

    PubMed  PubMed Central  Google Scholar 

  23. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    CAS  PubMed  Google Scholar 

  24. Antoniou AC et al (2010) A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 42(10):885–892

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bojesen SE et al (2013) Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 45(4):371–384, 384e1‑2

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Breast Cancer Association Consortium et al (2021) Breast cancer risk genes—association analysis in more than 113,000 women. N Engl J Med. https://doi.org/10.1056/NEJMoa1913948

    Article  Google Scholar 

  27. Couch FJ et al (2016) Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat Commun 7:11375

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Day FR et al (2015) Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 47(11):1294–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dunning AM et al (2016) Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet 48(4):374–386

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Escala-Garcia M et al (2020) A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nat Commun 11(1):312

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fachal L et al (2020) Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat Genet 52(1):56–73. https://doi.org/10.1038/s41588-019-0537-1. Epub 2020 Jan 7. PMID: 31911677; PMCID: PMC6974400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferreira MA et al (2019) Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun 10(1):1741–1741

    PubMed  PubMed Central  Google Scholar 

  33. Garcia-Closas M et al (2013) Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45(4):392–398, 398e1‑2

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghoussaini M et al (2018) Publisher Correction: Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nat Commun 9:16193

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghoussaini M et al (2012) Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 44(3):312–318

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Haiman CA et al (2011) A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat Genet 43(12):1210–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrenson K et al (2016) Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus. Nat Commun 7:12675

    PubMed  PubMed Central  Google Scholar 

  38. Lindstrom S et al (2015) Corrigendum: genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat Commun 6:8358

    PubMed  Google Scholar 

  39. Michailidou K et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45(4):353–361, 361e1‑2

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Michailidou K et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 551(7678):92–94

    PubMed  PubMed Central  Google Scholar 

  41. Milne RL et al (2017) Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 49(12):1767–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt MK et al (2016) Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J Clin Oncol 34(23):2750–2760

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Weischer M et al (2012) CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol 30(35):4308–4316

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu L et al (2018) A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet

  45. Zhang H et al (2020) Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 52(6):572–581

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Glubb DM et al (2021) Cross-cancer genome-wide association study of endometrial cancer and epithelial ovarian cancer identifies genetic risk regions associated with risk of both cancers. Cancer Epidemiol Biomarkers Prev 30(1):217–228

    PubMed  Google Scholar 

  47. Talhouk A et al (2020) Development and validation of the gene expression predictor of high-grade serous ovarian carcinoma molecular subTYPE (PrOTYPE). Clin Cancer Res 26(20):5411–5423

    PubMed  PubMed Central  Google Scholar 

  48. Millstein J et al (2020) Prognostic gene expression signature for high-grade serous ovarian cancer. Ann Oncol 31(9):1240–1250

    CAS  PubMed  Google Scholar 

  49. Yang Y et al (2019) Genetic data from nearly 63,000 women of European descent predicts DNA methylation biomarkers and epithelial ovarian cancer risk. Cancer Res 79(3):505–517

    CAS  PubMed  Google Scholar 

  50. Jiang X et al (2019) Publisher correction: shared heritability and functional enrichment across six solid cancers. Nat Commun 10(1):4386

    PubMed  PubMed Central  Google Scholar 

  51. Jiang X et al (2019) Shared heritability and functional enrichment across six solid cancers. Nat Commun 10(1):431

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wunderle M et al (2018) Risk, prediction and prevention of hereditary breast cancer - large-scale genomic studies in times of big and smart data. Geburtshilfe Frauenheilkd 78(5):481–492

    PubMed  PubMed Central  Google Scholar 

  53. Paik S et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    CAS  PubMed  Google Scholar 

  54. Kronenwett R et al (2012) Decentral gene expression analysis: analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test. BMC Cancer 12:456

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Buyse M et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192

    CAS  PubMed  Google Scholar 

  56. Pu M et al (2020) Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res Treat 179(1):197–206

    CAS  PubMed  Google Scholar 

  57. Okkenhaug K, Vanhaesebroeck B (2001) New responsibilities for the PI3K regulatory subunit p85 alpha. Sci STKE 2001(65):pe1

    CAS  PubMed  Google Scholar 

  58. Janku F (2017) Phosphoinositide 3‑kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients. Cancer Treat Rev 59:93–101

    CAS  PubMed  Google Scholar 

  59. Leach FS et al (1996) Expression of the human mismatch repair gene hMSH2 in normal and neoplastic tissues. Cancer Res 56(2):235–240

    CAS  PubMed  Google Scholar 

  60. Zhang S, Yu D (2010) PI(3)king apart PTEN’s role in cancer. Clin Cancer Res 16(17):4325–4330

    CAS  PubMed  Google Scholar 

  61. Lo YM et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487

    CAS  PubMed  Google Scholar 

  62. Breveglieri G et al (2019) Non-invasive prenatal testing using fetal DNA. Mol Diagn Ther 23(2):291–299

    CAS  PubMed  Google Scholar 

  63. Haque IS et al (2016) Modeled fetal risk of genetic diseases identified by expanded carrier screening. JAMA 316(7):734–742

    PubMed  Google Scholar 

  64. Dive L, Newson AJ (2020) Ethical issues in reproductive genetic carrier screening. Med J Aust

  65. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Google Scholar 

  66. Mosele F et al (2020) Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 31(11):1491–1505

    CAS  PubMed  Google Scholar 

  67. Mateo J et al (2018) A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 29(9):1895–1902

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Anderson P et al (2008) Real-world physician and patient behaviour across countries: Disease-Specific Programmes - a means to understand. Curr Med Res Opin 24(11):3063–3072

    CAS  PubMed  Google Scholar 

  69. Decker T, Steering Board OPAL, Stickeler E et al (2019) Die klinische Tumorregisterplattform OPAL stellt sich vor. Forum 34:74–76

    Google Scholar 

  70. Fasching PA et al (2015) Biomarkers in patients with metastatic breast cancer and the PRAEGNANT study network. Geburtshilfe Frauenheilkd 75(1):41–50

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Perol D et al (2019) The ongoing French metastatic breast cancer (MBC) cohort: the example-based methodology of the epidemiological strategy and medical economics (ESME). BMJ Open 9(2):e23568

    PubMed  PubMed Central  Google Scholar 

  72. Quek RGW, Mardekian J (2019) Clinical outcomes, treatment patterns, and health resource utilization among metastatic breast cancer patients with Germline BRCA1/2 mutation: a real-world retrospective study. Adv Ther 36(3):708–720

    CAS  PubMed  Google Scholar 

  73. Cardoso F et al (2016) 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375(8):717–729

    CAS  PubMed  Google Scholar 

  74. Filipits M et al (2019) Prediction of distant recurrence using endopredict among women with ER(+), HER2(-) node-positive and node-negative breast cancer treated with endocrine therapy only. Clin Cancer Res 25(13):3865–3872

    CAS  PubMed  Google Scholar 

  75. Kalinsky K et al (2020) SWOG S1007: adjuvant trial randomized ER+ patients who had a Recurrence Score 〈 25 and 1‑3 positive nodes to endocrine therapy (ET) versus ET + chemotherapy. San Antonio Breast Cancer Symposium 2020, S GS3-00

    Google Scholar 

  76. Sparano JA et al (2020) Clinical outcomes in early breast cancer with a high 21-gene recurrence score of 26 to 100 assigned to adjuvant chemotherapy plus endocrine therapy: a secondary analysis of the TAILORx randomized clinical trial. JAMA Oncol 6(3):367–374

    PubMed  Google Scholar 

  77. Bundesausschuss, G. (2019) Änderung der Richtlinie Methoden vertragsärztliche Versorgung: Biomarkerbasierte Tests zur Entscheidung für oder gegen eine adjuvante systemische Chemotherapie beim primären Mammakarzinom

    Google Scholar 

  78. Gemeinsamer Bundesausschuss (2019) Änderung der Richtlinie Methoden vertragsärztliche Versorgung: Biomarkerbasierte Tests zur Entscheidung für oder gegen eine adjuvante systemische Chemotherapie beim primären Mammakarzinom

    Google Scholar 

  79. Yamauchi H, Takei J (2018) Management of hereditary breast and ovarian cancer. Int J Clin Oncol 23(1):45–51

    CAS  PubMed  Google Scholar 

  80. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5(4):387–393

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Murai J et al (2012) Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res 72(21):5588–5599

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Litton JK et al (2018) Talazoparib in patients with advanced breast cancer and a Germline BRCA mutation. N Engl J Med 379(8):753–763

    CAS  PubMed  Google Scholar 

  83. Robson ME et al (2019) OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol 30(4):558–566

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fasching PA et al (2021) Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study). Ann Oncol 32(1):49–57

    CAS  PubMed  Google Scholar 

  85. Loibl S et al (2018) Survival analysis of carboplatin added to an anthracycline/taxane-based neoadjuvant chemotherapy and HRD score as predictor of response-final results from GeparSixto. Ann Oncol 29(12):2341–2347

    CAS  PubMed  Google Scholar 

  86. André F et al (2021) Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR‑1. Ann Oncol 32(2):208–217

    PubMed  Google Scholar 

  87. Hoda RS et al (2019) Secretory carcinoma of the breast: clinicopathologic profile of 14 cases emphasising distant metastatic potential. Histopathology 75(2):213–224

    PubMed  PubMed Central  Google Scholar 

  88. Marchio C et al (2019) ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol 30(9):1417–1427

    CAS  PubMed  Google Scholar 

  89. Ross J et al (2018) Abstract P2-09-15: 〈em〉NTRK〈/em〉 fusions in breast cancer: clinical, pathologic and genomic findings. Cancer Res 78(4 Supplement)):P2-09-15

    Google Scholar 

  90. DGHO (2020) NTRK-Inhibitoren als sog. tumoragnostische Arzneimittel. https://www.dgho.de/publikationen/stellungnahmen/gute-aerztliche-praxis/ntrk-inhibitoren/tumor-agnostische-arzneimittel-20200113.pdf. Zugegriffen: 17. Nov. 2020

  91. Jerzak KJ, Mancuso T, Eisen A (2018) Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review. Curr Oncol 25(2):e176–e180

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lemery S, Keegan P, Pazdur R (2017) First FDA approval agnostic of cancer site - when a biomarker defines the indication. N Engl J Med 377(15):1409–1412

    PubMed  Google Scholar 

  93. Arora S et al (2020) FDA approval summary: pembrolizumab plus lenvatinib for endometrial carcinoma, a collaborative international review under project orbis. Clin Cancer Res 26(19):5062–5067

    CAS  PubMed  Google Scholar 

  94. Latham A et al (2019) Microsatellite instability is associated with the presence of lynch syndrome pan-cancer. J Clin Oncol 37(4):286–295

    CAS  PubMed  Google Scholar 

  95. Schmid P et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121

    CAS  PubMed  Google Scholar 

  96. Schmid P et al (2020) Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 21(1):44–59

    CAS  PubMed  Google Scholar 

  97. Gonzalez-Angulo AM et al (2011) PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther 10(6):1093–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin NU et al (2012) Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 118(22):5463–5472

    PubMed  Google Scholar 

  99. Millis SZ et al (2015) Predictive biomarker profiling of 〉 6000 breast cancer patients shows heterogeneity in TNBC, with treatment implications. Clin Breast Cancer 15(6):473–481e3

    CAS  PubMed  Google Scholar 

  100. Cossu-Rocca P et al (2015) Analysis of PIK3CA mutations and activation pathways in triple negative breast cancer. PLoS ONE 10(11):e141763

    PubMed  PubMed Central  Google Scholar 

  101. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18

    CAS  PubMed  Google Scholar 

  102. Nagahashi M et al (2019) Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci 110(1):6–15

    CAS  PubMed  Google Scholar 

  103. Dawson SJ et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209

    CAS  PubMed  Google Scholar 

  104. Laakmann E et al (2020) Treatment landscape and prognosis after treatment with trastuzumab emtansine. Geburtshilfe Frauenheilkd 80(11):1134–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ciani M et al (2019) Genome wide association study and next generation sequencing: a glimmer of light toward new possible horizons in frontotemporal dementia research. Front Neurosci 13:506

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Fasching.

Ethics declarations

Interessenkonflikt

P.A. Fasching hat Honoraria von Novartis, Pfizer, Roche, Amgen, Celgene, Daiichi-Sankyo, AstraZeneca, Merck-Sharp & Dohme, Eisai, Puma und Teva erhalten. P.A. Fasching, C.E. Schulmeyer, S. Bader, H. Hübner und M. Rübner weisen auf folgende Beziehungen hin: Die Institution der Autoren führt Studien mit Unterstützung von Novartis und BioNTech durch. C.E. Schulmeyer, S. Bader, H. Hübner und M. Rübner geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

T. Fehm, Düsseldorf

W. Jonat, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulmeyer, C.E., Bader, S., Hübner, H. et al. NGS zur Selektion innovativer Therapien – Was bringt das?. Gynäkologe 54, 164–174 (2021). https://doi.org/10.1007/s00129-021-04774-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-021-04774-9

Schlüsselwörter

Keywords

Navigation