Skip to main content
Log in

Acid Generation and Heavy Metal Leachability from Lignite Spoil Heaps: Impact to the Topsoils of Oropos Basin, North Attica, Greece

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The disposal of lignite spoil and tailings poses a major environmental problem in lignite mining sites which is associated with the oxidation of sulfide minerals contained in the primary ore. This process renders acidic effluents. Lignite mining in the Oropos Neogene basin, North Attica, Greece operated since the last century and ceased in the late 1960s. Piles of complex waste material are dispersed close to the mining sites. The high sulfur content and low Net Neutralization Potential, i.e. values < − 20 CaCO3 kg/t in most analyzed waste samples, indicate that the waste is prone to acid generation. The leachates (EN12457) from the lignite spoils showed high concentrations in Ni and Zn exceeding the EU regulatory limits for the non-hazardous wastes. GIS-based geochemical maps of the topsoil showed enrichment in Ni (Cr, V) associated with the regional geogenic enrichment but also local accumulation around the hot spot sites of lignite spoil heaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adibee N, Osanloo M, Rahmanpour M (2013) Adverse effects of coal mine waste dumps on the environment and their management. Environ Earth Sci 70:1581–1592

    Article  CAS  Google Scholar 

  • Akabzaa TM, Armah TEK, Baneong-Yakubo BK (2007) Prediction of acid mine drainage generation potential in selected mines in the Ashanti Metallogenic Belt using static geochemical methods. Environ Geol 52:957–964

    Article  CAS  Google Scholar 

  • Alexakis D, Gamvroula D (2014) Arsenic, chromium, and other potentially toxic elements in the rocks and sediments of Oropos-Kalamos basin, Attica, Greece. Appl Environ Soil Sci 2014

  • Andivachi D, Kelepertzis E, Kelepertzis A (2012) Heavy metals in agricultural soils of the Mouriki-Thiva area (central Greece) and environmental impact implications. Soil Sediment Contam 21(4):434–450

    Article  Google Scholar 

  • BP (2020) Statistical review of world energy, 69th edition

  • CCME - Canadian Council of Ministers of the Environment (2006) A protocol for the derivation of environmental and human health soil quality guidelines. CCME, Winnipeg

    Google Scholar 

  • Chen J, Liu G, Kang Y, Wu B, Sun R, Zhou C, Wu D (2014) Coal utilization in China: environmental impacts and human health. Environ Geochem Health 36:735–753

    Article  CAS  Google Scholar 

  • Da Pelo S, Musu E, Cidu R, Frau F, Lattanzi P (2009) Release of toxic elements from rocks and mine wastes at the Furtei gold mine (Sardinia, Italy). J Gochem Explor 100:142–152

    Article  Google Scholar 

  • Dimitrakopoulos D, Vassiliou E, Founda M (2007) Impacts of mining activities on water resources to Megalopolis lignite district area. Geophysical Research Abstracts, Vol 9.11028. SRef-ID (2007) 1607-7962/gra/EGU2007-A-11028. European Geosciences Union 2007

  • Doka G (2009) Life Cycle Inventory of the disposal of lignite spoil, coal spoil and coal tailings. Commissioned by the Swiss Centre for Life Cycle Inventories ecoinvent Centre, Doka Life Cycle Assessments, Zurich

    Google Scholar 

  • Economou-Eliopoulos M, Antivachi D, Vasilatos C, Megremi I (2012) Evaluation of the Cr(VI) and other toxic element contamination and their potential sources: the case of the Thiva basin (Greece). Geosci Front 3(4):523–539

    Article  CAS  Google Scholar 

  • EUROCOAL (European Association for Coal and Lignite) (2019) Annual report

  • Fang WX, Huang ZY, Wu PW (2003) Contamination of the environmental ecosystems by trace elements from mining activities of Badao bone coal mine in China. Environ Geol 44(4):373–378

    Article  CAS  Google Scholar 

  • Foscolos AE, Goodarzi F, Koukouzas CN, Hatziyannis G (1989) Reconnaissance study of mineral matter and trace elements in Greek lignites. Chem Geol 76(1–2):107–130

    Article  CAS  Google Scholar 

  • Giannouli A, Klaitzidis S, Siavalas G, Chatziapostolou A, Christanis K, Papazisimou S, Papanicolaou C, Foscolos AE (2009) Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. Int J Coal Geol 77(3–4):383–393

    Article  CAS  Google Scholar 

  • Gentzis T, Goodarzi F, Koukouzas CN, Foscolos AE (1996) Petrology, mineralogy, and geochemistry of lignites from Crete. Greece Int J Coal Geol 30(1–2):131–150

    Article  CAS  Google Scholar 

  • HAEE (2019) Greek Energy Market Report 2019 powered by National Bank of Greece.

  • Hageman PL, Seal RR, Diehl SF, Piatak NM, Lowers HA (2015) Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Appl Geochem 57:125–139

    Article  CAS  Google Scholar 

  • Hecht H, Kölling M, Schulz HD (2003) Pyrite weathering in the unsaturated zone of lignite mine tailings: release of As, Cd, Ni and Pb in a soil column experiment. In: Hadeler A, Schulz HD (eds) Geochemical processes in soil and groundwater: measurement—modelling—upscaling. Wiley

  • Institute of Geology & Mineral Exploration-I.G.M.E (2000) Geological map of Greece 1:50.000. Eretria sheet. Institute of Geology and Mineral Exploration

  • Institute of Geology & Mineral Exploration-I.G.M.E (2002) Geological map of Greece 1:50.000. Kifissia sheet. Institute of Geology and Mineral Exploration

  • Institute of Geology & Mineral Exploration-I.G.M.E (2003) Geological map of Greece 1:50.000. Koropi–Plaka sheet. Institute of Geology and Mineral Exploration

  • Jambor JL (2003) Mine-waste mineralogy and mineralogical perspectives of acid–base accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes, vol 31. Mineralogical Association of Canada, Short Course, pp 117–146

    Google Scholar 

  • Jambor JL, Dutrizac JE, Raudsepp M (2007) Measured and computed neutralization potentials from static tests of diverse rock types. Environ Geol 52:1019–1031

    Article  CAS  Google Scholar 

  • Jamieson HE (2011) Geochemistry and mineralogy of solid mine wastes: essential knowledge for predicting environmental impact. Elements 7:381–386

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (1995) Agricultural problems related to excessive trace metal contents of soils. In: Salomons W, Forstner U, Mader P (eds) Heavy metals: problems and solutions. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Kaouras G, Antoniadis P, Blickwede H, Riegel W (1991) Petrographische und palynologische Untersuchungen an Braunkohlen im Becken van Drama, Ostmakedonien (Griechenland). Neues Jahrb. Geol. Palaontol. Monatsh, pp 145–162

  • Kelessidis VC, Tsmantaki C, Michalakis A, Christidis GE, Makri P, Papanicolaou K, Foscolos AE (2007) Greek lignites as additives for controlling filtration properties of water–bentonite suspensions at high temperatures. Fuel 86(7–8):1112–1121

    Article  CAS  Google Scholar 

  • Khan R, Israili SH, Ahmad H, Mohan A (2005) Heavy metal pollution assessment in surface water bodies and its suitability for irrigation around the Neyevli Lignite Mines and Associated Industrial Complex, Tamil Nadu, India. Mine Water Environ 24:155–161

    Article  CAS  Google Scholar 

  • Kossoff D, Hudson KA, Dubbin WE, Alfredsson MA (2011) Incongruent weathering of Cd and Zn from mine tailings: a column leaching study. Chem Geol 281:52–71

    Article  CAS  Google Scholar 

  • Kwong YTJ (1993) Mine site acid rock drainage assessment and prevention; a new challenge for a mining geologist. In: Proceedings of the international mining geology conference, Kalgoorlie, pp 213–217

  • Lapakko KA (2002) Metal mine rock and waste characterization tools: an overview, mining, minerals and sustainable development. Report 67, Acid Drainage Technology Initiative, http://pubs.iied.org/pdfs/G00559.pdf

  • Lawrence RW, Scheske M (1997) A method to calculate the neutralization potential of mining wastes. Environ Geol 32:100–106

    Article  CAS  Google Scholar 

  • Lottermoser BG (2010) Mine wastes: characterization, treatment, and environmental impacts. Springer, Heidelberg

    Book  Google Scholar 

  • Modabberi S, Alizadegan A, Mirnejad H, Esmaeilzadeh E (2013) Prediction of AMD generation potential in mining waste piles, in the sarcheshmeh porphyry copper deposit. Iran Environ Monit Assess 185:9077–9087

    Article  CAS  Google Scholar 

  • Modis K, Vatalis KI, Sachanidis Ch (2013) Spatiotemporal risk assessment of soil pollution in a lignite mining region using a Bayesian maximum entropy (BME) approach. Int J Coal Geol 112:173–179

    Article  CAS  Google Scholar 

  • Morin KA, Hutt NM (1994) Observed preferential depletion of neutralization potential over sulfide minerals in kinetic tests—site specific criteria for safe NP/AP ratios. In: Proceedings of International Land Reclamation and Mine Drainage Conference on the Abatement of Acidic Drainage, US Bureau of Mines SP06A–94, Pittsburgh, PA, USA, pp 148–156

  • Namaghi HH, Li S (2016) Acid-Generating and leaching potential of soils in a Coal Waste Pile in Northeastern China. Soil Sediment Contam 25(7):776–791

    Article  CAS  Google Scholar 

  • Navarro A, Cardellach E (2009) Mobilization of Ag, heavy metals and Eu from the waste deposit of Las Herrerıas mine (Almerıa, SE Spain). Environ Geol 56:1389–1404

    Article  CAS  Google Scholar 

  • Navarro Flores A, Martınez Sola F (2010) Evaluation of metal attenuation from mine tailings in SE Spain (Sierra Almagrera): a soil-leaching column study. Mine Water Environ 29:53–67

    Article  CAS  Google Scholar 

  • Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49:1089–1101

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Methods of soil analysis, Part 3—Chemical methods. Book Series 5, SSSA, Madison, WI (1996), pp. 961–1010

  • Papanikolaou D, Papanikolaou I (2007) Geological, geomorphological and tectonic structure of the NE Attica and seismic hazard implications for the northern edge of the Athens plain. Bull Geol Soc Greece 40:425–438

    Article  Google Scholar 

  • Papanikolaou C, Pasadakis N, Dimou D, Kalaitzidis S, Papazisimou S, Foscolos AE (2009) Adsorption of NO, SO2 and light hydrocarbons on activated Greek brown coals. Int J Coal Geol 77(3–4):401–408

    Article  Google Scholar 

  • Pentari D, Foscolos AE, Perdikatsis V (2004) Trace element contents in the Domeniko lignite deposit, Elassona basin, Central Greece. Int J Coal Geol 58(4):261–268

    Article  CAS  Google Scholar 

  • Pentari D, Typou J, Goodarzi F, Foscolos AE (2006) Comparison of elements of environmental concern in regular and reclaimed, near abandoned coal mines Ptolemais-Amynteon, northern Greece: impact on wheat crops. Int J Coal Geol 65:51–58

    Article  CAS  Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, MJ Logsdon (eds) The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Reviews in economic geology, vol 6A. Society of Economic Geologists, Littleton, CO, pp 71–116

  • Price WA (2009) Prediction manual of drainage chemistry from sulphidic geologic materials. Mend Report 1.20.1 (December 2009)

  • Reimann C, Fabian K, Birke M, Filzmoser P, Demetriades A, Négrel P et al (2018) GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl Geochem 88:302–318

    Article  CAS  Google Scholar 

  • Riegel W, Kaouras G, Velitzelos E (1995) Ecological aspects of coal formation in Neogene basins of Greece. Annales géologiques des pays helléniques 36:649–661

    Google Scholar 

  • Sahoo PF, Equeenuddin SM, Powell MA (2016) Trace elements in soils around coal mines: current scenario, impact and available techniques for management. Curr Pollut Rep 2:1–14. https://doi.org/10.1007/s40726-016-0025-5

    Article  CAS  Google Scholar 

  • Salinas Villafane OR, Igarashi T, Kurosawa M, Takase T (2012) Comparison of potentially toxic metals leaching from weathered rocks at a closed mine site between laboratory columns and field observation. Appl Geochem 27:2271–2279

    Article  CAS  Google Scholar 

  • Skousen J, Simmons J, McDonald LM, Ziemkiewicz P (2002) Acid–base accounting to predict post-mining drainage quality on surface mines. J Environ Qual 31:2034–2044

    Article  CAS  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. Rept EPA-600/z-78-054, US Environmental Protection Agency, Cincinnati

  • Willscher S, Schaum M, Goldammer J, Franke M, Kuehn D, Ihling H, Schaarschmidt T (2017) Environmental biogeochemical characterization of a lignite coal spoil and overburden site in Central Germany. Hydrometallurgy 173:170–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge V. Skounakis for support in performing the SEM/EDS analysis at the Faculty of Geology and Geoenvironment, NKUA and I. Megremi for assistance in the course of field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Stouraiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kampouroglou, E., Kollias, K., Stouraiti, C. et al. Acid Generation and Heavy Metal Leachability from Lignite Spoil Heaps: Impact to the Topsoils of Oropos Basin, North Attica, Greece. Bull Environ Contam Toxicol 106, 465–474 (2021). https://doi.org/10.1007/s00128-021-03122-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03122-w

Keywords

Navigation