Skip to main content
Log in

Genotoxic Damages and Bioaccumulation of Cadmium in Geophagus Brasiliensis (Quoy & Gaimard, 1824)

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The toxic effects of cadmium (Cd) in Geophagus brasiliensis was investigated in the present study. For this, 32 specimens of G. brasiliensis were exposed in individual aquaria to Cd concentrations (0.00, 0.01, 0.07, and 0.67 mg/L) for 14 days. The micronuclei test did not detect the genotoxic damage at the studied concentrations and time of exposure. However, the comet assay proved to be more efficient, as DNA damage was found in the animals exposed to the higher Cd concentrations. Finally, exposure of G. brasiliensis to Cd was associated with Cd accumulation in the gills, while only the animals exposed to 0.67 mg/L of Cd exhibited muscle accumulation. These results demonstrate that Cd concentrations over 0.07 mg/L caused genotoxic damage, as well as Cd accumulation in G. brasiliensis individuals after a 14 days exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afanasieva K, Sivolob A (2018) Physical principles and new applications of comet assay. Biophys Chem 238:1–7. https://doi.org/10.1016/j.bpc.2018.04.003

    Article  CAS  Google Scholar 

  • Al-Asgah NA, Abdel-Wahab Abdel-Warith A, El-Sayed MY, Hassan YA (2015) Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J Biol Sci 22:543–550

    Article  CAS  Google Scholar 

  • Andrade VM, Freitas TRO, Silva J (2004) Comet assay using mullet (Mugil sp) and sea catfish (Netuma sp) erythrocytes for the detection of genotoxic pollutants in aquatic environment. Mutat Res 560:57–67

    Article  CAS  Google Scholar 

  • Andres S, Ribeyre F, Tourencq JN, Boudou A (2000) Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci Total Environ 248:11–25

    Article  CAS  Google Scholar 

  • Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP (2018) An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 200:158–167

    Article  CAS  Google Scholar 

  • Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in ground waters and soils of Thane Region of Maharashtra, India. Environ Monit Assess 173:643–652. https://doi.org/10.1007/s10661-010-1412-9

    Article  CAS  Google Scholar 

  • Boock MV, Machado Neto JG (2005) Estudos sobre a toxicidade aguda do oxicloreto de cobre para o peixe Poecilia reticulata. B Inst Pesca 31(1):29–35

    Google Scholar 

  • Burger J (2008) Assessment and management of risk to wildlife from cadmium. Sci Total Environ 389:37–45

    Article  CAS  Google Scholar 

  • Çavas T, Garanko NN, Arkhipchuk VV (2005) Induction of micronuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and cooper sulphate. Food Chem Toxicol 43:569–574

    Article  CAS  Google Scholar 

  • Coppo GC, Passos LS, Lopes TOM, Pereira TM, Merçon J, Cabral DS, Barbosa BV, Caetano LS, Kapmkel EH (2018) Genotoxic, biochemical and bioconcentration effects of manganese on Oreochromis niloticus (Cichlidae). Ecotoxicology 1–11

  • Faverney CR, Devaux A, Lafaurie M, Girard JP (2001) Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species. Aquat Toxicol 53:65–76

    Article  Google Scholar 

  • Gao M, Yang Y, Lv M, Song W, Song Z (2018) Oxidative stress and DNA damage in zebrafish liver due to hydroxyapatite nanoparticles-loaded cadmium. Chemosphere 202:498–505

    Article  CAS  Google Scholar 

  • Grisolia CK, Oliveira ABB, Bonfim H, Klautau-Guimarães MN (2005) Genotoxicity evaluation of domestic sewage in a municipal waste water treatment plant. Genet Mol Biol 28(2):334–338

    Article  Google Scholar 

  • Isani G, Andreani G, Cocchioni F, Fedeli D, Carpené E, Falcioni G (2009) Cadmium accumulation and biochemical responses in Sparus aurata following sub-lethal Cd exposure. Ecotoxicol Environ Saf 72:224–230

    Article  CAS  Google Scholar 

  • Jia X, Zhang H, Liu X (2011) Low levels of cadmium exposure induce DNA damage and oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var color. Fish Physiol Biochem 97–103. https://doi.org/10.1007/s10695-010-9416-5

  • Jindal R, Verma S (2015) In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton). Ecotoxicol Environ Saf 118:1–10

    Article  CAS  Google Scholar 

  • Kobayashi H, Sugiyama C, Morikawa Y, Hayashi M, Sofuni T (1995) A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis. MMS Commun 3:103–115

    CAS  Google Scholar 

  • Kraal MH, Kraak MH, Groot CJ, Davids C (1995) Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicol Environ 31:179–183

    Article  CAS  Google Scholar 

  • Omar W, Zaghloul KH, Abdel-Khalek A, Abo-Hegab S (2012) Genotoxic effects of metal pollution in two fish species, Oreochromis niloticus and Mugil cephalus, from highly degraded aquatic habitats. Mutat Res - Genet Toxicol Environ Mutagenesis 746:7–14. https://doi.org/10.1016/j.mrgentox.2012.01.013

    Article  CAS  Google Scholar 

  • Perazzo GX, Noleto RB, Vicari MR, Gava A, Cestari MM (2013) Trends of karyotypical evolution in the pearl cichlid, Geophagus brasiliensis, from southern Brazil. Zoology 116:286–292. https://doi.org/10.1016/j.zool.2013.07.002

    Article  Google Scholar 

  • Pereira LS, Ribas JLC, Vicari T, Silva SB, Stival J, Baldan AP, Valdez Domingos FX, Grassi MT, Cestari MM, Silva de Assis HC (2016) Effects of ecologically relevant concentrations of cadmium in a freshwater fish. Ecotoxicol Environ Saf 130:29–36

    Article  CAS  Google Scholar 

  • Pinto AP, Mota AM, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by Sorghum plants. Sci Environ J 326:239–247

    CAS  Google Scholar 

  • Qu R, Wang X, Wang Z, Wei Z, Wang L (2014) Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater 275:89–98

    Article  CAS  Google Scholar 

  • Rocha TL, Gomes T, Cardoso C, Letendre J, Pinheiro JP, Sousa VS, Teixeira MR, Bebianno MJ (2014) Immunocytotoxicity, cytogenotoxicity and genotoxicity of cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis. Mar Environ Res 101:29–37

    Article  CAS  Google Scholar 

  • Saibua Y, Kumarb S, Jamwald A, Peake D, Niyogia S (2018) A FTIRM study of the interactive effects of metals (zinc, copper and cadmium) in binary mixtures on the biochemical constituents of the gills in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part C 211:48–56

    Google Scholar 

  • Sarkar A, Bhagat J, Ingole BS, Rao DP, Markad VL (2015) Genotoxicity of cadmium chloride in the marine gastropod Nerita chamaeleon using comet assay and alkaline unwinding assay. Environ Toxicol 30(2):177–187

    Article  CAS  Google Scholar 

  • Signa G, Mazzola A, Tramati CD, Salvatrice V (2017) Diet and habitat use in fl uence Hg and Cd transfer to fi sh and consequent biomagnification in a highly contaminated area: Augusta Bay (Mediterranean Sea). Environ Pollut 230:394–404. https://doi.org/10.1016/j.envpol.2017.06.027

    Article  CAS  Google Scholar 

  • Souid G, Souayed N, Yaktiti F, Maaroufi K (2013) Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol Environ Saf 89:1–7

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet Assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagenesis 35:206–222

    Article  CAS  Google Scholar 

  • Winkaler EU, Thiago RM, Santos TRU, Joaquim G, Machado-Neto JG, Martinez CBR (2007) Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comp Biochem Physiol Part C 145:236–244

    Google Scholar 

  • Wu SM, Shih MJ, Ho YC (2007) Toxicological stress response and cadmium distribution in hybrid tilápia (Oreochromis sp.) upon cadmium exposure. Comp Biochem Physiol 145:218–226

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Espírito Santo State Scientific Research Foundation (FAPES) for providing a post-graduate stipend for the student Emanuelle C. Queiroz (#66695368/14). This work was also supported by a research grant from an internal project of University Vila Velha (#06/2009) and by a research grant from FAPES (Proc. #61902861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Regina Chippari-Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, E.C., da Silva, B.F., Salla, R.V. et al. Genotoxic Damages and Bioaccumulation of Cadmium in Geophagus Brasiliensis (Quoy & Gaimard, 1824). Bull Environ Contam Toxicol 102, 181–185 (2019). https://doi.org/10.1007/s00128-018-2524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2524-0

Keywords

Navigation