Skip to main content

Advertisement

Log in

Characterization of Hydrocarbon-Degrading Bacteria in Constructed Wetland Microcosms Used to Treat Crude Oil Polluted Water

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Ten plant species were grown in constructed wetlands (CWs) to remediate water containing 2% (w/v) crude oil. The plant species with better growth and biomass production were Typha latifolia and Cyperus laevigatus, and they were significantly correlated (R2 = 0.91) with hydrocarbon degradation. From T. latifolia and C. laevigatus, 33 hydrocarbon-degrading bacterial strains were isolated from the rhizosphere, and root and shoot interiors. More diversified bacteria were found in the rhizosphere and endosphere of C. laevigatus than those of T. latifolia. The predominant cultural hydrocarbon-degrading bacteria were shown to belong to the genera Pseudomonas, Acinetobacter and Bacillus. In addition to genes involved in hydrocarbon degradation, most of the bacteria displayed multiple plant growth promoting (PGP) activities. This study suggests the importance of selecting suitable bacterial strains with hydrocarbon degradation and PGP activities for improving the efficacy of CWs used in remediating water contaminated with crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. https://doi.org/10.4061/2011/941810

    Article  CAS  Google Scholar 

  • Fatima K, Afzal M, Imran A, Khan QM (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94:314–320

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  Google Scholar 

  • Kirk JL, Klirnomos JN, Lee H, Trevors JT (2002) Phytotoxicity assay to assess plant species for phytoremediation of petroleum-contaminated soil. Bioremediat J 6:57–63

    Article  CAS  Google Scholar 

  • Li R-L, Liu B-B, Zhu Y-X, Zhang Y (2016) Effects of flooding and aging on phytoremediation of typical polycyclic aromatic hydrocarbons in mangrove sediments by Kandelia obovata seedlings. Ecotoxicol Environ Saf 128:118–125

    Article  CAS  Google Scholar 

  • Liu X, Wang Z, Zhang X, Wang J, Xu G, Cao Z, Zhong C, Su P (2011) Degradation of diesel-originated pollutants in wetlands by Scirpus triqueter and microorganisms. Ecotoxicol Environ Saf 74:1967–1972

    Article  CAS  Google Scholar 

  • Mahmood T, Zhang J, Zhang G (2016) Assessment of constructed wetland in nutrient reduction, in the commercial scale experiment ponds of freshwater prawn Macrobrachium rosenbergii. Bull Environ Contam Toxicol 96:361–368

    Article  CAS  Google Scholar 

  • Reva ON, Hallin PF, Willenbrock H, Sicheritz-Ponten T, Tummler B, Ussery DW (2008) Global features of the Alcanivorax borkumensis SK2 genome. Environ Microbiol 10:614–625

    Article  CAS  Google Scholar 

  • Ruan X, Xue Y, Wu J, Ni L, Sun M, Zhang X (2006) Treatment of polluted river water using pilot-scale constructed wetlands. Bull Environ Contam Toxicol 76:90–97

    Article  CAS  Google Scholar 

  • Schneiker S, dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    Article  CAS  Google Scholar 

  • Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159

    Article  CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  CAS  Google Scholar 

  • Singh T, Singh DK (2018) Assessing the bacterial community structure in the rhizoplane of wetland plants. Bull Environ Contam Toxicol 101:521–526

    Article  CAS  Google Scholar 

  • Sung K, Kim KS, Park S (2013) Enhancing degradation of total petroleum hydrocarbons and uptake of heavy metals in a wetland microcosm planted with Phragmites communis by humic acids addition. Int J Phytorem 15:536–549

    Article  CAS  Google Scholar 

  • Tara N, Afzal M, Ansari TM, Tahseen R, Iqbal S, Khan QM (2014) Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Int J Phytorem 16:1268–1277

    Article  CAS  Google Scholar 

  • Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  Google Scholar 

  • Wu T, Hong B, Zhou S, Zhao J, Xia C, Liu H (2012) Residues of HCHs and DDTs in soils and sediments of preconstructing urban wetland. Bull Environ Contam Toxicol 89:563–567

    Article  CAS  Google Scholar 

  • Ying X, Dongmei G, Judong L, Zhenyu W (2011) Plant-microbe interactions to improve crude oil degradation. Energy Procedia 5:844–848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Higher Education Commission, Pakistan (Grant No. 20-3854/R&D/HEC/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Afzal.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmat, A.J., Afzal, M., Fatima, K. et al. Characterization of Hydrocarbon-Degrading Bacteria in Constructed Wetland Microcosms Used to Treat Crude Oil Polluted Water. Bull Environ Contam Toxicol 102, 358–364 (2019). https://doi.org/10.1007/s00128-018-2518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2518-y

Keywords

Navigation