Skip to main content

Advertisement

Log in

Sensitivity of the Endogeic Tropical Earthworm Pontoscolex corethrurus to the Presence of Heavy Crude Oil

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with “Maya” Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC50) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Buch AC, Brown GG, Niva CC, Sautter KD, Lourençato LF (2011) Life cycle of Pontoscolex corethrurus (Muller, 1857) in tropical artificial soil. Pedobiologia 54S:S19–S25

    Article  Google Scholar 

  • Buch AC, Brown GG, Niva CC, Sautter KD, Sousa JP (2013) Toxicity of three pesticides commonly used in Brasil to Pontoscolex corethrurus (Müller, 1857) and Eisenia andrei (Bouché, 1972). Appl Soil Ecol 69:32–38

    Article  Google Scholar 

  • Buch AC, Schmelz RM, Niva CC, Fernandes CME, Silva-Filho EV (2017) Mercury critical concentrations to Enchytraeus crypticus (Annelida:Oligochaeta) under normal and extreme conditions of moisture in tropical soil- reproduction and survival. Environ Res 155:365–372

    Article  CAS  Google Scholar 

  • Ceccanti B, Masciandaro G, Garcia C, Macci C, Doni S (2006) Soil bioremediation: combination of erathworms and compost for ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut 177:383–397

    Article  CAS  Google Scholar 

  • Cermak JH, Stephenson GL, Birkholz D, Wang Z, Dixon DG (2010) Toxicity of petroleum hydrocarbon destillates to soil organisms. Environ Toxicol Chem 29:2685–2694

    Article  CAS  Google Scholar 

  • Da Silva PMCS, Van Gestel CAM (2009) Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using soil types in the tropics. Chemosphere 77:1609–1613

    Article  Google Scholar 

  • Da Silva E, Nahmani J, Lapied E, Alphonse V, Garnier-Zarli E, Bousserrhine N (2016) Toxicity of mercury to the earthworm Pontoscolex corethrurus in a tropical soil French Guiana. Appl Soil Ecol 104:79–84

    Article  Google Scholar 

  • Duarte AP, Melo VF, Brown GG, Pauletti V (2014) Earthworms (Pontoscolex corethrurus) survival and impacts on properties of soils from a lead mining site Southern Brazil. Biol Fertil Soils 50:851–860

    Article  CAS  Google Scholar 

  • Ekperusi OA, Aigbodion FI (2015) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech 5:957–965

    Article  CAS  Google Scholar 

  • Fernández MD, Pro J, Alonso C, Aragonese P, Tarazona JV (2011) Terrestrial microcosms in a feasibility study on the remediation of diesel-contaminated soils. Ecotoxicol Environ Saf 74:2133–2140

    Article  Google Scholar 

  • Fiedler S, Siebe C, Herre A, Roth B, Cram S, Stahr K (2009) Contribution of oil industry activities to environmental loads of heavy metal in the Tabasco lowlands, Mexico. Water Air Soil Pollut 197:35–47

    Article  CAS  Google Scholar 

  • García JA, Fragoso C (2003) Influence of different food substrates on growth and reproduction of two tropical earthworms species (Pontoscolex corethrurus and Amynthas corticis). Pedobiologia 47:754–763

    Google Scholar 

  • García-Pérez JA, Alarcón-Gutiérrez E, Perroni Y, Barois I (2014) Earthworm communities and soil properties in shaded coffe plantations with and without application of glyphosate. Appl Soil Ecol 83:230–237

    Article  Google Scholar 

  • Geissen V, Gomez-Rivera P, Huerta E, Bello R, Trujillo A, Barba E (2008) Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico. Ecotoxicol Environ Saf 7:638–642

    Article  Google Scholar 

  • Gibbs MH, Wicker LF, Stewart AJ (1996) A method for assessing sublethal effects of contaminants in soils to the earthworm, Eisenia foetida. Environ Toxicol Chem 15:360–368

    Article  CAS  Google Scholar 

  • Gilman AP, Vardanis A (1974) Carbofuran: comparative toxicity and metabolism in the worms Lumbricus terrestris L. and Eiseni foetida S. J Agric Food Chem 22:625–628

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassay. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Hanna SHS, Weaver RW (2002) Earthworm survival in oil contaminated soil. Plant Soil 240:127–132

    Article  Google Scholar 

  • Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185:2989–2998

    Article  CAS  Google Scholar 

  • Hernández-Castellanos B, Ortiz-Ceballos AI, Martínez-Hernández S, Noa-Carrazana JC, Luna-Guido M, Dendoveen L, Contreras-Ramos SM (2013) Removal of benzo(a)pyrene from using an endogeic earthworm Pontoscolex corethrurus (Müller, 1857). Appl Soil Ecol 70:62–69

    Article  Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments: An alternative for acute and reproduction test. J Soil Sedim 1:15–20

    Article  CAS  Google Scholar 

  • International Standard Organization (ISO) (2008) Soil quality-Avoidance test for determining the quality of soils and effects of chemicals on behaviour. ISO-17512-1:2008. Part 1: test with earthworms (Eisenia fetida and Eisenia andrei)

  • International Standard Organization (ISO) (2012) Soil quality-Effects of pollutants on earthworms. ISO-11268-1:2012 (2nd ed). Part 1: determination of acute toxicity to Eisenia fetida/ Eisenia Andrei

  • Jusselme MD, Poly F, Miambi E, Mora P, Blouin M, Pando A, Rouland-Lefèvre (2012) effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Sci Total Environ 416:200–207

    Article  CAS  Google Scholar 

  • Lavelle P, Barois I, Cruz I, Fragoso C, Hernández A, Pineda A, Rangel P (1987) Adaptive strategies of Pontoscolex corethrurus (Glossscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fertil Soils 5:188–194

    Article  Google Scholar 

  • Lowe CN, Butt KR (2007) Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: a critical review. Eur J Soil Biol 43:S281–S288

    Article  CAS  Google Scholar 

  • Norton D (1996) Earthworm bioassay protocol for soil toxicity screening. Washington State Department of Ecology, Olympia. Publication No. 96–327

    Google Scholar 

  • Oboh BO, Adeyinka Y, Awonuga A, Akinola MO (2007) Impact of soil types and petroleum effluents on the earthworm, Eudrilus eugeniae. J Environ Biol 28:209–212

    CAS  Google Scholar 

  • Ortiz-Ceballos AI, Pérez-Staples D, Pérez-Rodríguez P (2016) Nest site selection and nutritional provision through excreta: a form of parental care in a tropical endogeic earthworm. PeerJ 4:e2032. doi:10.7717/peerj.2032

    Article  Google Scholar 

  • Ortiz-Gamino D, Pérez-Rodríguez P, Ortiz-Ceballos AI (2016) Invasion of the tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) in temperate grasslands. PeerJ 4:e2572. doi:10.7717/peerj.2572

    Article  Google Scholar 

  • Patowary R, Patowary K, Devi A, Kalita MC, Deka S (2017) Uptake of total petroleum hydrocarbon (THP) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. grown in soil contaminated with crude oil. Bull Environ Contam Toxicol 98:120–126

    Article  CAS  Google Scholar 

  • Pelosi C, Joimel S, Makowski D (2013) Searching for a more sensitive earthworm species to be used in pesticide homologation tests—A meta-analysis. Chemosphere 90:895–900

    Article  CAS  Google Scholar 

  • Pelosi C, Barot S, Capowiez, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. A review. Agron Sustain Dev 34:199–228

    Article  CAS  Google Scholar 

  • Plice MJ (1949) Some effects of crude petroleum on soil fertility. Soil Sci Soc Am J 13:413–416

    Article  CAS  Google Scholar 

  • Reinecke AJ, Maboeta MS, Vermeulen LA, Reinecke SA (2002) Assessment of lead nitrate and mancozeb toxicity in earthworms using the avoidance response. Bull Environ Contam Toxicol 68:779–786

    Article  CAS  Google Scholar 

  • Schaefer M (2003) Behavioural endpoints in earthworm ecotoxicology. Evaluation of different test systems in soil toxicity assessment. J Soils Sedim 3:79–84

    Article  CAS  Google Scholar 

  • Schaefer M, Filser J (2007) The influence of earthworms and organic additives on the biodegradation of soil contaminated soil. Appl Soil Ecol 36:53–62

    Article  Google Scholar 

  • Schaefer M, Petersen SO, Filser J (2005) Effects of Lumbricus terrestris, Allolobophora chlorotica and Eisenia fetida on microbial community dynamics in oil-contaminated soil. Soil Biol Biochem 37:2065–2076

    Article  CAS  Google Scholar 

  • SEMARNAT (2006) Mexican Official Standard NMX-AA-134-SCFI-2006. Soils-Heavy fraction hydrocarbons by extraction and gravimetry. México

  • SEMARNAT (2013) Mexican Official Standard NOM-138-SEMANAT/SSA1-2012. Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y expecificaciones para la remediación. México

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851

    Article  CAS  Google Scholar 

  • Trejo-Hernández MR, Ortiz A, Okoh AI, Morales D, Quintero (2007) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere 68:848–855

    Article  Google Scholar 

  • Vermeulen LA, Reinecke AJ, Reinecke SA (2001) Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (Mancozeb) for sublethal and acute toxicity to Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf 48:183–189

    Article  CAS  Google Scholar 

  • Villalobos M, Avila-Forcada P, Gutierrez-Ruiz ME (2008) An improved gravimetric method to determine petroleum hydrocarbons in contaminated soil. Water Air Soil Pollut 194:151–161

    Article  CAS  Google Scholar 

  • Xie X, Qian Y, Wu Y, Yin J, Zhai J (2013) Effects decabromodiphenyl ether (BDE-209) on avoidance response, survival, growth and reproduction of earthworms (Eisenia fetida). Ecotoxicol Environ Saf 90:21–27

    Article  CAS  Google Scholar 

  • Yasu T, Toyota F, Hiroaki KS (2005) Enhanced bioremediation of oil-contaminated soil by a combination of the earthworm (Eisenia fetida) and Tea extraction residue. Edaphologia 77:1–9

    Google Scholar 

  • Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537

    CAS  Google Scholar 

  • Zavala-Cruz J, Trujillo-Capistrán F, Ortiz-Ceballos G, Ortiz-Ceballos AI (2013) Tropical endogeic earthworm population in a pollution gradient with weathered crude oil. Res J Environ Sci 7:15–26

    Article  Google Scholar 

  • Zhang L, Liu X, You L, Zhou D, Wang Q, Li F et al (2011) Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance (H1 NMR) based metabolomics. Environ Toxicol Pharmacol 32:218–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rafael Ramos Morales for helpful discussion and Alejandro Castro-Luna for support in the statistical analysis. This research work was provided by the PRODEP-SEP (CA-UVER-173 and CA-UVER-332) and Mexican CONACYT (CB-2007-01/83600). We also two anonymous reviewers for valuable comments and careful revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel I. Ortíz-Ceballos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Carmen Cuevas-Díaz, M., Vázquez-Luna, D., Martínez-Hernández, S. et al. Sensitivity of the Endogeic Tropical Earthworm Pontoscolex corethrurus to the Presence of Heavy Crude Oil. Bull Environ Contam Toxicol 99, 154–160 (2017). https://doi.org/10.1007/s00128-017-2126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-017-2126-2

Keywords

Navigation