Skip to main content
Log in

Fabrication of Metal–Organic Framework MOF-177 Coatings on Stainless Steel Fibers for Head-Space Solid-Phase Microextraction of Phenols

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Direct head-space solid-phase microextraction (HS-SPME) of phenols in water is usually difficult due to its polarity and solubility in aqueous matrix. Herein we report the fabrication of metal–organic framework MOF-177 coated stainless steel fiber for the HS-SPME of phenols (2-methylolphenol, 4-methylolphenol, 2,4-dimethylolphenol, 2,4-dichlorphenol, and 3-methyl-4-chlorophenol) in environmental water samples prior to the gas chromatography-mass spectrometry detection. Several parameters affecting the extraction efficiency were optimized in the experiment, including extraction temperature and time, the pH value and salt addition. The results indicated that the coated fiber gave low detection limits (0.015–0.043 μg L−1) and good repeatability with the RSD ranging from 2.8% to 5.5% for phenols. The recoveries are between 84.5%–98.6% with the spiked level of 10 μg L−1 for the real water samples. The established method may afford a kind of potential enrichment material and a reference method for the analysis of methylphenols in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abolghasemi MM, Parastari S, Yousefi V (2016) A nanoporous anodized alumina wire with a nanosized hydro-xyapatite coating for headspace solid-phase microextraction of phenol and chlorophenols. Microchim Acta 183:241–247

    Article  CAS  Google Scholar 

  • Anbia M, Haghia A, Shariati S (2012) Novel fiber coated with nanoporous carbons for headspace solid-phase microextraction of chlorophenols from aqueous media. Anal. Methods 4: 2555–2561

    Article  CAS  Google Scholar 

  • Aquino A, Wanderley KA, Paiva-Santos CDO, de Sá GF, Alexandre MDR, Júnior SA, Navickiene S (2010) Coordination polymer adsorbent for matrix solid-phase dispersion extraction of pesticides during analysis of dehydrated Hyptis pectinata medicinal plant by GC/MS. Talanta 83:631–636

    Article  CAS  Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  • Barreto AS, Silva RL, Santos Silva SCG, Rodrigues MO, Simone CA, De Sá GF, Júnior SA, Navickiene S, Mesquita ME (2010) Potential of a metal–organic framework as a new material for solid-phase extraction of pesticides from lettuce (Lactuca sativa), with analysis by gas chromatography-mass spectrometry. J Sep Sci 33:3811–3816

    Article  CAS  Google Scholar 

  • Carvalho PHV, Barreto AS, Rodrigues MO, Menezes Prata V, Alves PB, Mesquita ME, Jfflnior SA, Navickiene S (2009) Two-dimensional coordination polymer matrix for solid-phase extraction of pesticide residues from plant Cordia salicifolia. J Sep Sci 32:2132–2138

    Article  Google Scholar 

  • Chae HK, Siberio-Pérez DY, Kim J, Go YB, Eddaoudi M, Matzger AJ, ÓKeeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527

    Article  CAS  Google Scholar 

  • Chang N, Gu ZY, Yan XP (2010) Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J Am Chem Soc 132:13645–13647

    Article  CAS  Google Scholar 

  • Chang N, Gu ZY, Wang HF, Yan XP (2011) Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes. Anal Chem 83:7094–7101

    Article  CAS  Google Scholar 

  • Chen XF, Zang H, Wang X, Cheng JG, Zhao RS, Cheng CG, Lu XQ (2012) Metal–organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry. Analyst 137:5411–5419

    Article  CAS  Google Scholar 

  • Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP (2009) In situ hydrothermal growth of metal-organic framework MOF-199 films on stainless steel fiber for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81:9771–9777

    Article  CAS  Google Scholar 

  • Derouiche A, Driss MR, Morizur JP, Taphanel MH (2007) Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in water by headspace solid-phase microextraction with gas chromatography-tandem mass spectrometry. J Chromatogr A 1138:231–243

    Article  CAS  Google Scholar 

  • Gao JJ, Liu LH, Liu XR, Zhou HD, Huang SB, Wang ZJ (2008) Levels and spatial distribution of chlorophenols-2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. Chemosphere 71:1181–1187

    Article  CAS  Google Scholar 

  • Gu ZY, Wang G, Yan XP (2010) MOF-5 metal-organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Anal Chem 82: 1365–1370

    Article  CAS  Google Scholar 

  • Gu ZY, Yang CX, Chang N, Yan XP (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745

    Article  CAS  Google Scholar 

  • He CT, Tian JY, Liu SY, Ouyang GF, Zhang JP, Chen XM (2013) A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds. Chem Sci 4:351–356

    Article  CAS  Google Scholar 

  • Landin P, Llompart M, Lourido M, Cela R (2001) Determination of tri-through heptachlorobiphenyls in water samples by SPME-GC-MS-MS: comparison of PDMS and PDMS-DVB coatings. J Microcolumn Sep 13: 275–284

    Article  CAS  Google Scholar 

  • Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  • Lin CZJ, Chui SSY, Lo SMF, Shek FLY, Wu MM, Suwinska K, Lipkowski J, Williams ID (2002) Physical stability vs. chemical lability in microporous metal coordination polymers: a comparison of (Cu(OH) (INA))n and (Cu(INA)2)n:(INA = 1,4-(NC5H4CO2). Chem Commun 15:1642–1643

    Article  Google Scholar 

  • Liu SS, Yang CX, Wang SW, Yan XP (2012) High-performance liquid chromatographic separation of position isomers using metal-organic frame-work MIL-53(Al) as the stationary phase. Analyst 137:816–818

    Article  CAS  Google Scholar 

  • Llompart M, Li K, Fingas M (1999) Headspace solid-phase microextraction for the determination of polychlorinated biphenyls in soils and sediments. J Microcolumn Sep 11:397–402

    Article  CAS  Google Scholar 

  • Ouyang GF, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111:2784–2814

    Article  CAS  Google Scholar 

  • Pawliszyn J (1997) Solid-phase microextraction: theory and practice. Wiley, New York

    Google Scholar 

  • Peñalver A, Pocurull E, Borrull F, Marcé RM (2002) Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples. J Chromatogr A 953:79–87

    Article  Google Scholar 

  • Regueiroa J, Becerril E, Garcia-Jaresa C, Llomparta M (2009) Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography–tandem mass spectrometry. J Chromatogr A 1216:4693–4702

    Article  Google Scholar 

  • Shang HB, Yang CX, Yan XP (2014) Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase micro-extraction of phenols in water samples. J Chromatogr A 1357:165–171

    Article  CAS  Google Scholar 

  • Vuckovic D, Risticevic S, Pawliszyn J (2011) In vivo solid-phase microextraction in metabolomics: opportunities for the direct investigation of biological systems. Angew Chem Int Ed Engl 50:5618–5628

    Article  CAS  Google Scholar 

  • Wang GH, Lei YQ, Song HC (2012) Exploration of a coordination polymer as a novel sorbent for the solid-phase extraction of benzo(a)pyrene in edible oils. Anal Methods 4:647–651

    Article  CAS  Google Scholar 

  • Wang GH, Lei YQ, Song HC (2014) Evaluation of Fe3O4@SiO2–MOF-177 as an advantageous adsorbent for magnetic solid-phase extraction of phenols in environmental water samples. Anal Methods 6:7842–7847

    Article  CAS  Google Scholar 

  • Wang GH, Lei YQ, Song HC (2015) Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Talanta 144:369–374

    Article  CAS  Google Scholar 

  • Wu YY, Yang CX, Yan XP (2014) Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A 1334:1–8

    Article  CAS  Google Scholar 

  • Xie LJ, Liu SQ, Han ZB, Jiang RF, Liu H, Zhu F, Zeng F, Su CY, Ouyang GF (2015) Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal Chim Acta 853:303–310

    Article  CAS  Google Scholar 

  • Yang CX, Yan XP (2013) Application of metal-organic frameworks in sample pretreatment. Chin J Anal Chem 41:1297–1301

    Article  CAS  Google Scholar 

  • Yang Y, Miller DJ, Hawthorne SB (1998) Solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A 800:257–266

    Article  CAS  Google Scholar 

  • Yang CX, Chen YJ, Wang HF, Yan XP (2011) High performance separation organic framework MIL-101(Cr). Chem Eur J 17:11734–11737

    Article  CAS  Google Scholar 

  • Yang CX, Liu SS, Wang HF, Wang SW, Yan XP (2012) High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. Analyst 137:133–139

    Article  CAS  Google Scholar 

  • Yu LQ, Yan XP (2013) Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chem Commun 49:2142–2144

    Article  CAS  Google Scholar 

  • Zang H, Yuan JP, Chen XF, Liu CA, Cheng CG, Zhao RS (2013) Hollow fiber-protected metal–organic framework materials as micro-solid-phase extraction adsorbents for the determination of polychlorinated biphenyls in water samples by gas chromatography-tandem mass spectrometry. Anal Methods 5:4875–4882

    Article  CAS  Google Scholar 

  • Zhang Z, Pawliszyn J (1993) Headspace solid-phase micro extraction. Anal Chem 65:1843–1852

    Article  CAS  Google Scholar 

  • Zhou YY, Yan XP, Kim KN, Wang SW Liu MG (2006) Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials. J Chromatogr A 1116: 172–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 21207121) and the Science and Technology Projects of Guangdong Province (Nos. 2016B020211004 and 2014B010108016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GH., Lei, YQ. Fabrication of Metal–Organic Framework MOF-177 Coatings on Stainless Steel Fibers for Head-Space Solid-Phase Microextraction of Phenols. Bull Environ Contam Toxicol 99, 270–275 (2017). https://doi.org/10.1007/s00128-017-2101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-017-2101-y

Keywords

Navigation