Skip to main content

Advertisement

Log in

Spatial and Seasonal Variations of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Particulate Matter (PM10, PM2.5) in Three Mega-Cities in China and Identification of Major Contributing Source Types

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Beijing, is the political, economic and cultural center of China. Tianjin and Shijiazhuang, located close to Beijing are also two mega-cities with huge population. The rapid economic development in the three cities in the last decades has caused severe air pollution problems, especially airborne PAHs pollution, in both gaseous and particulate phases, which has resulted in considerable harm to the health of local residents. In this study, a total of 671 air samples were collected in the three cities and reference site, and four national air quality background sites. Concentrations and seasonal variations were discussed to describe the pollution status and identify possible sources. The results showed that concentrations of BaP, a PAH that serves as an indicator of PAH pollution, exceeded the Chinese national standard by 4–12 times. PAH concentrations varied significantly in different seasons, with similar trends in the three cities. The toxic equivalents quantity (i.e., quantity of total PAHs with an equivalent toxicity to BaP) ranged from 13.35 to 22.54 ng/m3 during the central heating period of winter and spring. These concentrations greatly exceeded the Chinese national standards for 24-h average (2.5 ng/m3) and annual average (1.0 ng/m3) concentrations of BaP. Two ratios that are indicative of PAH source, Pyr/BaP and BaP/BghiP, revealed that high percentages of the PAH pollution were contributed by coal combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aichner B, Glaser B, Zech W (2007) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from Kathmandu Nepal. Organ Geochem 38:700–715

    Article  CAS  Google Scholar 

  • Cao ZH, Wang YQ, Ma YM (2005) Occurrence and distribution of polycyclic aromatic hydrocarbons in reclaimed water and surface water of Tianjin China. J Hazard Mater A 122:51–59

    Article  CAS  Google Scholar 

  • Chen YY, Ebenstein A, Greenstone M, Li HB (2013) Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. PNAS.101073/pnas1300018110

  • Chung MK, Hu R, Cheung KC (2007) Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons. Chemosphere 67:464–473

    Article  CAS  Google Scholar 

  • Grimmer GG (1983) Environmental carcinogens: polycyclic aromatic hydrocarbons chemistry occurrence biochemistry carcinogenicity. CRC Press, Boca Raton

    Google Scholar 

  • Gupta S, Kumar K, Srivastava A (2011) Size distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric environment of Delhi, India. Sci Total Environ 409(22):4674–4680

    Article  CAS  Google Scholar 

  • Hoffman D, Wynder EL (1971) Respiratory carcinogens their nature and precursors. In: Westley B (ed) Identification and measurement of environmental pollutants. National Research Council, Ottawa, pp 9–16

    Google Scholar 

  • IARC (1983) Monographs on the evaluation of the carcinogenic risk of chemicals to humans: Polynuclear aromatic hydrocarbons, vol 32. World Health Organization (WHO), Lyon

    Google Scholar 

  • Jung KH, Yan B, Chillrud SN (2010) Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int J Environ Res Public Health 7:1889–1900

    Article  CAS  Google Scholar 

  • Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Baer DV, OyolSource P (2001) Apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol 35:2288–2294

    Article  CAS  Google Scholar 

  • Lv JG, Xu RJ, Wu GP, Zhang QH, Li YM, Wang P, Liao CY, Liu JY, Jiang GB, Wei FS (2009) Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. J Environ Monit 11(7):1368–1374

    Article  CAS  Google Scholar 

  • Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284

    Article  CAS  Google Scholar 

  • Nisbet ICT, Lagoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Perera FP (1997) Environment and cancer: who are susceptible? Science 278:1068–1073

    Article  CAS  Google Scholar 

  • Ping LF, Luo YM, Zhang HB (2007) Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region east China. Environ Pollut 147:358–365

    Article  CAS  Google Scholar 

  • USEPA (2005) Priority pollutants. Code of federal regulations. Title 40: protection of environment, chap I. Appendix A to 40 CFR Part 423. 1st July 2005. Environmental Protection Agency, Washington, DC

  • Wang YG, Ying Q, Hu JL, Zhang HL (2014) Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ Int 73:413–422

    Article  CAS  Google Scholar 

  • Wei FS (2007) Monitoring method for air and waste air, 4th edn. Ministry of Environment Protection, Beijing

    Google Scholar 

  • Yu XZ, Gao Y, Wu SC (2006) Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China affected by recycling of electronic waste using primitive technologies. Chemosphere 65:1500–1509

    Article  CAS  Google Scholar 

  • Zhu Y, Yang L, Yuan Q (2014) Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: concentration, size distribution, toxicity and sources. Sci Total Environ 466–467:357–368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Chinese National Public Interest Environmental Protection Research Fund (No. 201309050) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungang Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, R. & Lv, J. Spatial and Seasonal Variations of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Particulate Matter (PM10, PM2.5) in Three Mega-Cities in China and Identification of Major Contributing Source Types. Bull Environ Contam Toxicol 96, 827–832 (2016). https://doi.org/10.1007/s00128-016-1810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1810-y

Keywords

Navigation