Skip to main content

Advertisement

Log in

Biodegradation of Tributyltin (TBT) by Extremophile Bacteria from Atacama Desert and Speciation of Tin By-products

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Biodegradation of tributyltin (TBT) by four tin resistant Gram negative bacteria isolated from extremely contaminated river sediments in the Atacama Desert in Chile was studied. Moraxella osloensis showed the greatest resistance and degradation capability of TBT, producing less toxic by-products, such as dibutyltin (DBT) and inorganic tin. In 7 days, approximately 80 % of TBT degradation was achieved, generating close to 20 % of DBT as degradation product. The degradation rate constant (k) was 0.022 [day−1] and TBT half-life (t1/2) in culture was 4.3 days. Debutylation is stated a probable mechanism of TBT degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azua-Bustos A, Urrejola C, Vicuña R (2012) Life at the dry edge: microorganisms of the Atacama Desert. FEBS Lett 586:2939–2945

    Article  CAS  Google Scholar 

  • Bangkedphol S, Keenan HE, Davidson C, Sakultantimetha A, Songsasen A (2009) The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere 77(10):1326–1332

    Article  CAS  Google Scholar 

  • Brandsch R, Nowak KE, Binder N, Jastorff B (2001) Investigations concerning the sustainability of remediation by land deposition of tributyltin contaminated harbour sediments. J Soils Sediments 1:234–236

    Article  CAS  Google Scholar 

  • Bull AT, Asenjo JA (2013) Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. Antonie Van Leeuwenhoek 103:1173–1179

    Article  CAS  Google Scholar 

  • Castro IB, Arroyo MF, Costa PG, Fillmann G (2012) Butyltin compounds and imposex levels in Ecuador. Arch Environ Contam Toxicol 62(1):68–77

    Article  CAS  Google Scholar 

  • Cornejo L, Lienqueo H, Arenas M, Acarapi J, Contreras D, Yáñez J, Mansilla HD (2008) In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environ Pollut 156(3):827–831

    Article  CAS  Google Scholar 

  • Craig PJ (2003) Organotin compounds in the environment. In: Cima F, Craig PJ, Harrington C (eds) Organometallic compounds in the environment, 2nd edn. Wiley, West Sussex, pp 129–130

    Chapter  Google Scholar 

  • Cruz A, Caetano T, Suzuki S, Mendo S (2007) Aeromonas veronii, a tributyltin (TBT)—degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal. Mar Environ Res 64(5):639–650

    Article  CAS  Google Scholar 

  • Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48(1):57–69

    Article  CAS  Google Scholar 

  • Escalante G, Campos VL, Valenzuela C, Yañez J, Zaror C, Mondaca MA (2009) Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile). Bull Environ Contam Toxicol 83:657–661

    Article  CAS  Google Scholar 

  • Fukushima K, Dubey KS, Suzuki S (2012) YgiW homologous gene from Pseudomonas aeruginosa 25 W is responsible for tributyltin resistance. J Gen Appl Microbiol 58(4):283–289

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258(1):119–127

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  Google Scholar 

  • Gipperth L (2009) The legal design of the international and European Union ban on tributyltin antifouling paint: direct and indirect effects. J Environ Manag 90:S86–S95

    Article  CAS  Google Scholar 

  • Hallas LE, Cooney JJ (1981) Tin and tin-resistant microorganisms in Chesapeake Bay. Appl Environ Microbiol 56:441–446

    Google Scholar 

  • Harino H, Kitano M, Mori Y, Mochida K, Kakuno A, Arima S (2005) Degradation of antifouling booster biocides in water. J Mar Biol Assoc UK 85(1):33–38

    Article  CAS  Google Scholar 

  • Hohlneicher U, Hartmann R, Taraz K, Budzikiewicz H (1995) Pyoverdin, ferribactin, azotobactin: a new triad of siderophores from Pseudomonas chlororaphis ATCC 9446 and its relation to Pseudomonas fluorescens ATCC 13525. Z Naturforsch 50C:337–344

    Google Scholar 

  • Kawai S, Kurokaw Y, Harino H, Fukushima M (1998) Degradation of tributyltin by a bacterial strain isolated from polluted river water. Environ Pollut 102:259–263

    Article  CAS  Google Scholar 

  • Landmeyer JE, Tanner TL, Watt BE (2004) Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release. Environ Sci Technol 38:4106–4112

    Article  CAS  Google Scholar 

  • Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374

    Article  CAS  Google Scholar 

  • Roy U, Bhosle S (2006) Microbial transformation of tributyltin chloride by Pseudomonas aeruginosa strain USS25 NCIM5224. Appl Organomet Chem 20:5–11

    Article  CAS  Google Scholar 

  • Roy U, Dubey SK, Bhosle S (2004) Tributyltin chloride-utilizing bacteria from marine ecosystem of west coast of India. Curr Sci 86(5):702–705

    Google Scholar 

  • Rüdel H, Müller J, Steinhanses J, Schröter-Kermani C (2007) Retrospective monitoring of organotin compounds in freshwater fish from 1988 to 2003: results from the German environmental specimen bank. Chemosphere 66(10):1884–1894

    Article  Google Scholar 

  • Sakultantimetha A, Keenan HE, Beattie TK, Aspray TJ, Bangkedphol S, Songsasen A (2010) Acceleration of tributyltin biodegradation by sediment microorganisms under optimized environmental conditions. Int Biodeter Biodegr 64(6):467–473

    Article  CAS  Google Scholar 

  • Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O (2011) Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere 83(5):680–686

    Article  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136(1):187–195

    Article  CAS  Google Scholar 

  • Stasinakis AS, Thomaidis NS, Nikolaou A, Kantifes A (2005) Aerobic biodegradation of organotin compounds in activated sludge batch reactors. Environ Pollut 134:431–438

    Article  CAS  Google Scholar 

  • Stivaletta N, Barbieri R, Billi D (2012) Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Origins Life Evol B 42(2–3):187–200

    Article  CAS  Google Scholar 

  • Visoottiviseth P, Kruawan K, Bhumiratana A, Wilairat P (1995) Isolation of bacterial culture capable of degrading triphenyltin pesticides. Appl Organomet Chem 9:1–9

    Article  CAS  Google Scholar 

  • White JS, Tobin JM (2004) Inorganic tin and organotin interactions with Candida maltose. Appl Microbiol Biotechnol 63(4):445–451

    Article  CAS  Google Scholar 

  • White JS, Tobin JM, Cooney JJ (1999) Organotin compounds and their interactions with microoganisms. Can J Microbiol 45(7):541–554

    Article  CAS  Google Scholar 

  • Zachariadis GA, Rosenberg E (2009) Speciation of organotin compounds in urine by GC–MIP–AED and GC–MS after ethylation and liquid–liquid extraction. J Chromatogr B 877:1140–1144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support of the National Commission for Scientific and Technological Research (Conicyt) Project Fondecyt Nos. 1121128 and 1130502, Associative Research Program of Grant PIA ACT-130. Furthermore, the authors appreciate the support of Red Doctoral REDOC.CTA, MINEDUC Project UCO1202 at University of Concepción and the international collaboration program of Project Fondecyt No. 1121128 for the financial support of Professor Dulasiri Amarasiriwardena’s visit to the University of Concepción.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Yáñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yáñez, J., Riffo, P., Santander, P. et al. Biodegradation of Tributyltin (TBT) by Extremophile Bacteria from Atacama Desert and Speciation of Tin By-products. Bull Environ Contam Toxicol 95, 126–130 (2015). https://doi.org/10.1007/s00128-015-1561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1561-1

Keywords

Navigation