Skip to main content
Log in

A Facile Vortex-Assisted Dispersive Liquid–Liquid Microextraction Method for the Determination of Uranyl Ion at Low Levels by Spectrophotometry

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A facile and reliable UV–Vis spectrophotometric method associated with vortex-assisted dispersive liquid–liquid microextraction has been developed and applied to the determination of U(VI) at low levels in water samples. It was based on preconcentration of 24.0 mL sample at pH 8.0 in the presence of 7.4 µmol L−1 1-(2-pyridylazo)-2-naphthol, 1.0 mL of methanol as disperser solvent and 1.0 mL of chloroform as extraction solvent. A high preconcentration factor was achieved (396 times), thus providing a wide analytical curve from 6.9 up to 75.9 µg L−1 (r = 0.9982) and limits of detection and quantification of 0.40 and 1.30 µg L−1, respectively. When necessary, EDTA or KCN can be used to remove interferences of foreign ions. The method was applied to the analysis of real water samples, such as tap, mineral and lake waters with good recovery values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antoniou S, Tsiaili A, Pashalidis I (2008) Alpha radiometry of uranium in surface and ground waters by liquid scintillation counting after separation of the radionuclide by cation exchange. Radiat Meas 43(3):1294–1298. doi:10.1016/j.radmeas.2008.02.015

    Article  CAS  Google Scholar 

  • Aydin FA, Soylak M (2007) Solid phase extraction and preconcentration of uranium(VI) and thorium (IV) on duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 72(1):187–192. doi:10.1016/j.talanta.2006.10.01

    Article  CAS  Google Scholar 

  • Birke M, Rauch U, Lorenz H, Kringel R (2010) Distribution of uranium in German bottled and tap water. J Geochem Explor 107(3):272–282. doi:10.1016/j.gexplo.2010.04.003

    Article  CAS  Google Scholar 

  • BMH—Brazilian Ministry of Healthy (2011) Resolution Number 2914, 12 December

  • El Himri M, Pastor A, de La Guardia M (2000) Determination of uranium in tap water by ICP-MS. Fresenius J Anal Chem 367(2):151–156. doi:10.1007/s002160051616

    Article  CAS  Google Scholar 

  • Ghiasvand AR, Heidari N, Hashemi P (2014) Highly sensitive and selective determination of uranium in natural water through a novel solidified floating organic drop microextraction method coupled with spectrophotometric determination. Anal Methods 6(15):5992–5998. doi:10.1039/c4ay00981a

    Article  CAS  Google Scholar 

  • Grupdan K, Jakmunee J, Sooksamiti P (1998) Spectrophotometric determination of uranium by flow injection analysis using U/TEVA. SpecTM chromatographic resin. J Rad Nucl Chem 229(1–2):179–181. doi:10.1007/BF02389471

    Google Scholar 

  • Horzum N, Shahwan T, Parlak O, Demir MM (2012) Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow. Chem Eng J 213(1):41–49. doi:10.1016/j.cej.2012.09.114

    Article  CAS  Google Scholar 

  • Jain VK, Pandya RA, Pillai SG, Shrivastav PS (2006) Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calyx[4]arene anchored chloromethylated polystyrene solid phase. Talanta 70(2):257–266. doi:10.1016/j.talanta.2006.02.032

    Article  CAS  Google Scholar 

  • Jalbani N, Soylak M (2014) Spectrophotometric determination of uranium using chromotrope 2R complexes. J Rad Nucl Chem 301(1):263–268. doi:10.1007/s10967-014-3132-z

    Article  CAS  Google Scholar 

  • Kaykhaii M, Ghasemi E (2013) Room temperature ionic liquid-based dispersive liquid–liquid microextraction of uranium in water samples before spectrophotometric determination. Anal Methods 5(19):5260–5266. doi:10.1039/C3AY41190G

    Article  CAS  Google Scholar 

  • Kumar M, Kumar A, Singh S, Mahajan RK, Walia TPS (2003) Uranium content measurement in drinking water samples using track etch technique. Radiat Meas 36(1–6):479–481. doi:10.1016/S1350-4487(03)00176-8

    Article  CAS  Google Scholar 

  • Long GL, Winefordner JD (1983) Limit of detection: a closer look at the IUPAC definition. Anal Chem 55(7):712–715. doi:10.1021/ac00258a724

    Google Scholar 

  • Madrakian T, Afkahami A, Mousavi A (2007) Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction. Talanta 71(2):610–614. doi:10.1016/j.talanta.2006.05.002

    Article  CAS  Google Scholar 

  • Metilda P, Sanghamitra K, Mary Gladis J, Naidu GR, Prasada RT (2004) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium (VI). Talanta 65(1):192–200. doi:10.1016/j.talanta.2004.06.005

    Google Scholar 

  • Oxspring DA, Maxwell TJ, Smyth WF (1996) UV-visible spectrophotometric, adsorptive stripping voltammetric and capillary electrophoretic study of 2-(S-bromo-2′-pyridylazo)–5diethylaminophenol and its chelates. Anal Chim Acta 323(1):97–105. doi:10.1016/0003-2670(95)00624-9

    Article  CAS  Google Scholar 

  • Prasada RT, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination—an overview. Talanta 68(4):1047–1064. doi:10.1016/j.talanta.2005.07.021

    Article  Google Scholar 

  • Sadeghi S, Sheikhzadeh E (2009) Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples. J Hazard Mater 163(2–3):861–868. doi:10.1016/j.jhazmat.2008.07.053

    Article  CAS  Google Scholar 

  • Santos JS, Teixeira LSG, Santos WNL, Lemos VA, Godoy JM, Ferreira SLC (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674(2):143–156. doi:10.1016/j.aca.2010.06.010

    Article  CAS  Google Scholar 

  • Shah F, Soylak M, Kazi TG, Afridi HI (2013) Development of an extractive spectrophotometric method for uranium using MWCNTs as solid phase and arsenazo(III) as chromophore. J Rad Nucl Chem 296(3):1239–1245. doi:10.1007/s10967-012-2376-8

    Article  CAS  Google Scholar 

  • Shibata S (1960) Spectrophotometric determination of uranium with 1-(2-pyridylazo)-2-naphthol. Anal Chim Acta 22:479–484. doi:10.1016/S0003-2670(00)88320-8

    Article  CAS  Google Scholar 

  • Shibata S, Furukawa M, Ishiguro Y (1974) Spectrophotometric determination of uranium with 1-[(5-methyl-2-pyridyl)azo)-2-naphthol. Microchim Acta 62(1):129–133. doi:10.1007/BF01271427

    Article  Google Scholar 

  • Singh P, Rana NPS, Azam A, Naqvi AH, Srivastava DS (1996) Levels of uranium in waters from some Indian cities determined by fission track analysis. Radiat Meas 26(5):683–687. doi:10.1016/S1350-4487(97)82882-X

    Article  CAS  Google Scholar 

  • Singh S, Malhotra R, Kumar J, Singh B, Singh L (2001) Uranium analysis of geological samples, water and plants from Kulu Area, Himachal Pradesh, India. Radiat Meas 34:427–431. doi:10.1016/S1350-4487(01)00200-1

    Article  CAS  Google Scholar 

  • Singh J, Singh H, Singh S, Bajwa BS (2009) Estimation of uranium and radon concentration in some drinking water samples of upper Siwaliks. Índia Environ Monit Assess 154(1–4):15–22. doi:10.1007/s10661-008-0373-8

    Article  CAS  Google Scholar 

  • Starvin AM, Prasada RT (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63(2):225–232. doi:10.1016/j.talanta.2003.11.001

    Article  CAS  Google Scholar 

  • Veselsky JC, Kwiecinska B, Wehrstein E, Suschny O (1988) Determination of uranium in minerals by laser fluorimetry. Analyst 113(3):451–455. doi:10.1039/AN9881300451

    Article  CAS  Google Scholar 

  • WHO—World Health Organization (2004) Guidelines for drinking water quality, vol. 1, 3rd edn. Geneva, Switzerland

  • Yiantzi E, Psillakis E, Tyrovola K, Kalegerakis N (2010) Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80(5):2057–2062. doi:10.1016/j.talanta.2009.11.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq, CAPES, Fundação Araucária do Paraná/SANEPAR and INCT-Bio for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Ricardo Teixeira Tarley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corazza, M.Z., Pires, I.M.R., Diniz, K.M. et al. A Facile Vortex-Assisted Dispersive Liquid–Liquid Microextraction Method for the Determination of Uranyl Ion at Low Levels by Spectrophotometry. Bull Environ Contam Toxicol 95, 215–220 (2015). https://doi.org/10.1007/s00128-015-1539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1539-z

Keywords

Navigation