Skip to main content

Advertisement

Log in

Effects of Zinc Exposure on Earthworms, Lumbricus terrestris, in an Artificial Soil

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Earthworms have the potential to act as trophic links for pollutants that accumulate in urban soils. However, many pollutants may act as micronutrients at low concentrations and toxins at higher concentration. When pollutants are also micronutrients, bioaccumulations may initially increase trophic transfer as pollutant concentration increase, but at higher levels toxic effects may limit population size and the potential for trophic transfer. We found support for this model among earthworms exposed to a range of soil Zn levels. Worms showed increasing bioaccumulation of Zn with increasing Zn soil concentrations, but at higher Zn levels worm growth rates decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach, 2nd edn. Springer Science + Business, New York

    Google Scholar 

  • Councell TB, Duckenfield KU, Landa ER, Callender E (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38:4206–4214

    Article  CAS  Google Scholar 

  • Davis AP, Shokouhian M, Ni S (2001) Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 44:997–1009

    Article  CAS  Google Scholar 

  • Demuynck S, Grumiaux F, Mottier V, Schikorski D, Lemière S, Leprêtre A (2007) Cd/Zn exposure interactions on metallothionein response in Eisenia fetida (Annelida, Oligochaeta). Comp Biochem Physiol C Toxicol Pharmacol 145:658–668

    Article  CAS  Google Scholar 

  • Gellein K, Flaten TP, Erikson KM, Aschner M, Syversen T (2008) Leaching of trace elements from biological tissue by formalin fixation. Biol Trace Elem Res 121:221–225

    Article  CAS  Google Scholar 

  • Kamitani T, Kaneko N (2007) Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan. Ecotoxicol Environ Saf 66:82–91

    Article  CAS  Google Scholar 

  • Lev SM, Landa ER, Szlavecz K, Casey RE, Snodgrass JW (2008) Application of synchrotron methods to assess the uptake of roadway-derived Zn by earthworms in an urban soil. Mineral Mag 72:191–195

    Article  CAS  Google Scholar 

  • Lokke H, Janssen CR, Lanno RP, Rombke J, Rundgren S, Van Straalen NM (2002) Soil toxicity tests—invertebrates. In: Fairbrother A, Glazebrook PW, Van Straalen NM, Tarazona JV (eds) Test methods to determine hazards of sparingly soluble metal compounds in soils. SETAC Press, Pensacola

    Google Scholar 

  • Lukkari T, Taavitsainen M, Vaisanen A, Haimi J (2004) Effects of heavy metals on earthworms along contamination gradients in organic rich soils. Ecotoxicol Environ Saf 59:340–348

    Article  CAS  Google Scholar 

  • Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145:402–424

    Article  CAS  Google Scholar 

  • Nahmani J, Hodson ME, Devin S, Vijver MG (2009) Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils. Environ Pollut 10:2622–2628

    Article  Google Scholar 

  • Neuhauser EF, Cukic ZV, Malecki MR, Loehr RC, Durkin PR (1995) Bioconcentration and biokinetics of metals in the earthworm. Environ Pollut 89:293–301

    Article  CAS  Google Scholar 

  • OECD (2000) Guidelines for the Testing of Chemicals No. 222. Earthworm Reproduction Test, Geneva, Switzerland

  • Peijnenburg WJGM, Baerselman R, de Groot AC, Jager T, Posthuma L, Van Veen RPM (1999) Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the Oligochaete Eisenia andrei. Ecotoxicol Environ Saf 44:294–310

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999) Comparison of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Appl Soil Eco 11:227–243

    Article  Google Scholar 

  • Sturzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms. Identification of a cadmium-specific metallothionein. J Biol Chem 276:34013–34018

    Article  CAS  Google Scholar 

  • Vijver MG, Van Gestel CAM, Van Straalen NM, Lanno RP, Peijnenburg WJGM (2006) Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). Environ Toxicol Chem 25:807–814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Towson University and NSF for funding to support instrumentation and personnel for this project (DMR-0116619; CHE-0420353, CHE-0754947). We thank Mark Monk for assistance with laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Lev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev, S.M., Matthies, N., Snodgrass, J.W. et al. Effects of Zinc Exposure on Earthworms, Lumbricus terrestris, in an Artificial Soil. Bull Environ Contam Toxicol 84, 687–691 (2010). https://doi.org/10.1007/s00128-010-0002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-010-0002-4

Keywords

Navigation