Skip to main content
Log in

Effects of Molinate on Survival and Development of Bombina orientalis (Boulenger) Embryos

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Molinate, a thiocarbamate chemical is a slightly to moderately toxic herbicide in EPA (Environmental Protection Agency) toxicity class III, and is a registered as a General Use Pesticide (GUP). Bombina orientalis is one of the most common amphibians in the world and comprise a large proportion of their total number in Korea. B. orientalis spawns in the rice fields at spring when the massive application of agricultural chemicals occurs. In the present study, we examined the effects of molinate on embryonic survival and developmental abnormality in B. orientalis embryos. The difference in survival rate between vehicle control and molinate treated embryos was not observed until the blastula stage. The first statistically significant decrease in embryonic survival was observed at mouth open stage following exposure to 100 μM molinate (46.8% vs. 81.1% in control). When the embryos develop to tadpole stage survival was significantly decreased at 50 μM molinate (35.9% vs. 68.9% in control), suggesting that the lowest observed effective dose (LOED) for systemic toxicity in B. orientalis embryos is 50 μM. In survived embryos molinate exposure produced several types of severe developmental abnormalities in order of frequency with bent trunk, neurula with yolk plug, bent tail, tail dysplasia, ventral blister, eye dysplasia, thick-set body and cephalic dysplasia. This suggests that molinate targets multiple events in embryonic and larval development in this frog species. Together this suggested that molinate was detrimental for survival and development following zygotic transcription after midblastula transition in B. orientalis embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Burdett AS, Stevens MM, Macmillan DL (2001) Laboratory and field studies on the effect of molinate, clomazone, and thiobencarb on nontarget aquatic invertebrates. Environ Toxicol Chem 20:2229–2236. doi:10.1897/1551-5028(2001)020<2229:LAFSOT>2.0.CO;2

    Article  CAS  Google Scholar 

  • Cooper RL, Barrett MA, Goldman JM, Rehnberg GL, McElroy WK, Stoker TE (1994) Pregnancy alterations following xenobiotic-induced delays in ovulation in the female rat. Fundam Appl Toxicol 22:474–480. doi:10.1006/faat.1994.1053

    Article  CAS  Google Scholar 

  • Ellis MK, Richardson AG, Foster JR, Smith FM, Widdowson PS, Farnworth MJ, Moore RB, Pitts MR, Wickramaratne GA (1998) The reproductive toxicity of molinate and metabolites to the male rat: effects on testosterone and sperm morphology. Toxicol Appl Pharmacol 151:22–32. doi:10.1006/taap.1998.8371

    Article  CAS  Google Scholar 

  • Finlayson BJ, Faggella GA (1986) Comparison of laboratory and field observations of fish exposed to the herbicides molinate and thiobencarb. Trans Am Fish Soc 115:882–890. doi:10.1577/1548-8659(1986)115<882:COLAFO>2.0.CO;2

    Article  Google Scholar 

  • Hartley D, Kidd H (1983) The agrochemicals handbook. Royal Society of Chemistry, Nottingham, UK

    Google Scholar 

  • Heath AG, Cech JJ, Zinkl JG, Finlayson R, Fujimura R (1993a) Sublethal effects of methyl parathion, carbofuran, and molinate on larval striped bass. Am Fish Soc Symp 14:17–28

    Google Scholar 

  • Heath AG, Cech JJ, Zinkle JG, Steele MD (1993b) Sublethal effects of three pesticides on Japanese medaka. Arch Environ Contam Toxicol 25:485–491. doi:10.1007/BF00214337

    Article  CAS  Google Scholar 

  • Heath AG, Cech JJ Jr, Brink L, Moberg P, Zinkl JG (1997) Physiological responses of fathead minnow larvae to rice pesticides. Ecotoxicol Environ Saf 37:280–288. doi:10.1006/eesa.1997.1563

    Article  CAS  Google Scholar 

  • Jewell WT, Miller MG (1998) Identification of a carboxylesterase as the major protein bound by molinate. Toxicol Appl Pharmacol 149:226–234. doi:10.1006/taap.1998.8381

    Article  CAS  Google Scholar 

  • Jewell WT, Hess RA, Miller MG (1998) Testicular toxicity of molinate in the rat: metabolic activation via sulfoxidation. Toxicol Appl Pharmacol 149:159–166. doi:10.1006/taap.1998.8380

    Article  CAS  Google Scholar 

  • Kang HS, Gye MC, Kim MK (2005) Effects of alachlor on survival and development of Bombina orientalis (Boulenger) embryos. Bull Environ Contam Toxicol 74:1199–1206. doi:10.1007/s00128-005-0708-x

    Article  CAS  Google Scholar 

  • Kang HS, Gye MC, Kim MK (2008) Effects of endosulfan on survival and development of Bombina orientalis (Boulenger) embryos. Bull Environ Contam Toxicol 81:262–265. doi:10.1007/s00128-008-9475-9

    Article  CAS  Google Scholar 

  • Kavlock R, Cummings A (2005) Mode of action: reduction of testosterone availability-molinate-induced inhibition of spermatogenesis. Crit Rev Toxicol 35:685–690. doi:10.1080/10408440591007386

    Article  CAS  Google Scholar 

  • Kuroda K, Yamaguchi Y, Endo G (1992) Mitotic toxicity, sister chromatid exchange, and rec assay of pesticides. Arch Environ Contam Toxicol 23:13–18. doi:10.1007/BF00225990

    Article  CAS  Google Scholar 

  • Meister RT (ed) (1991) Farm chemicals handbook ‘91. Meister Publishing Company, Willoughby, OH

    Google Scholar 

  • Park BJ, Kyung KS, Choi JH, Im GJ, Kim IS, Shim JH (2005) Environmental fate of the herbicide molinate in a rice-paddy-soil lysimeter. Bull Environ Contam Toxicol 75:937–944. doi:10.1007/s00128-005-0840-7

    Article  CAS  Google Scholar 

  • Pena-Llopis S, Pena JB, Sancho E, Fernandez-Vega C, Ferrando MD (2001) Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere 45:671–681. doi:10.1016/S0045-6535(00)00500-2

    Article  CAS  Google Scholar 

  • Phyu YL, Warne MS, Lim RP (2006) Toxicity and bioavailability of atrazine and molinate to the freshwater fish (Melanotenia fluviatilis) under laboratory and simulated field conditions. Sci Total Environ 356:86–99. doi:10.1016/j.scitotenv.2005.04.003

    Article  CAS  Google Scholar 

  • Rugh R (1962) Experimental embryology, 3rd edn. Burgess Publishing Co, Minneapolis, MN

    Google Scholar 

  • Stoker TE, Cooper RL, Goldman JM, Andrews JE (1996) Characterization of pregnancy outcome following thiram-induced ovulatory delay in the female rat. Neurotoxicol Teratol 18:277–282. doi:10.1016/S0892-0362(96)90025-2

    Article  CAS  Google Scholar 

  • Tomlin C (2000) The pesticide manual: a world compendium, 12th edn. The British Crop Protection Council, Farnham, UK

    Google Scholar 

  • Wickramaratne GA, Foster JR, Ellis MK, Tomenson JA (1998) Molinate: rodent reproductive toxicity and its relevance to humans—a review. Regul Toxicol Pharmacol 27:112–118. doi:10.1006/rtph.1998.1200

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from Korean Research Foundation (KRF-2006-J01901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Gye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H.S., Park, C.J. & Gye, M.C. Effects of Molinate on Survival and Development of Bombina orientalis (Boulenger) Embryos. Bull Environ Contam Toxicol 82, 305–309 (2009). https://doi.org/10.1007/s00128-008-9602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-008-9602-7

Keywords

Navigation