Skip to main content
Log in

Ecotoxicological Quantitative Structure–Activity Relationships for Pharmaceuticals

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This paper examined active pharmaceutical ingredients (APIs) acute ecotoxicological modes of action (MOA). It was concluded that the vast majority of APIs acute MOA was non-specific narcosis as; 85% out of 59 APIs had an excess toxicity ratio <7; 70% of the APIs ecotoxicity was overestimated based on a narcotic model; and the majority of APIs Log EC50-Log K ow regression slopes (−0.49 to −0.86) were within the range of the universal narcosis slopes. However, hydrophobicity is likely not the proper descriptor for assessment of pharmacodynamic APIs chronic ecotoxicity, to asses this accurately new experimental methods need development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Calabrese EJ, Staudenmayer JW, Stanek EJ III, Hoffmann GR (2006) Hormesis outperforms threshold model in national cancer institute antitumor drug screening database. Toxicol Sci 94:368–378

    Article  CAS  Google Scholar 

  • Daughton CG, Jones-Lepp TL (2001) Pharmaceuticals and personal care products in the environment. Scientific and regulatory issues. American Chemical Society, ACS symposium series; 791. ISBN 0-8412-3739-5, USA

  • Escher BI, Eggen RIL, Schreiber U, Schreiber Z, Vye E, Wisner B, Schwarzenbach RP (2002) Baseline toxicity (narcosis) of organic chemicals determined by in vitro membrane potential measurements in energy-transducing membranes. Environ Sci Technol 36:1971–1979

    Article  CAS  Google Scholar 

  • Escher BI, Bramaz N, Eggen RIL, Richter M (2005) In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environ Sci Technol 39:3090–3100

    Article  CAS  Google Scholar 

  • EU (2001) CSTEE. Discussion paper on environmental risk assessment of medical products for human use (non-genetically modified organisms (non-GMO) containing). CPMPpaperRAssessHumPharm12062001/D(01). Brussels, Belgium

  • Hansch C, Hoekman D, Leo A, Zhang L, Peng L (1995) The expanding role of quantitative structure–activity relationships (QSAR) in toxicology. Toxicol Lett 79:45–53

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2001) Human pharmaceuticals in the aquatic environment – a review. Environ Technol 22:1383–1394

    Article  CAS  Google Scholar 

  • Jørgensen SE, Halling-Sørensen B (2000). Editorial: drugs in the environment. Chemosphere 40:691–699

    Article  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LR, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Luckenbach T, Epel D (2005) Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters. Environ Health Perspect 113:17–24

    Article  CAS  Google Scholar 

  • Martindale (2002) In: Sweetman SC (ed) Martindale, the complete drug reference, 33 edn. Pharmaceutical Press Chicago, USA, p 2483

  • McGrath JA, Parkerton TF, DiToro DM (2004) Application of the narcosis target lipid model to algal toxicity and deriving predicted-no-effect concentrations. Environ Toxicol Chem 23:2503–2517

    Article  CAS  Google Scholar 

  • NOAA (2006) Pharmaceuticals in the environment. http://www.chbr.noaa.gov/peiar/ (accessed 1 July 2007)

  • Öberg T (2004) A QSAR for baseline toxicity: validation, domain of application, and prediction. Chem Res Toxicol 17:1630–1637

    Article  CAS  Google Scholar 

  • Ruch RJ (2002) Intercellular communication, homeostasis, and toxicology. Toxicol Sci 68:265–266

    Article  CAS  Google Scholar 

  • Russom CL, Bradbury SP, Broderius SJ, Hammersten DE, Drummond RA (1997) Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16:948–967

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144:383–395

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Reitsma T, Brain RA, Wilson CJ, Solomon KR (2004) Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul Toxicol Pharmacol 39:158–183

    Article  CAS  Google Scholar 

  • Seiler JP (2002) Pharmacodynamic activity of drugs and ecotoxicology – can the two be connected? Toxicol Lett 131:105–115

    Article  CAS  Google Scholar 

  • USEPA (2007) ECOSAR: http://www.epa.gov/opptintr/exposure/pubs/episuite.htm (accessed 1 July 2007)

  • Veith GD, Broderius SJ (1990) Rules for distinguishing toxicants that cause type I and type II narcosis syndromes. Environ Health Perspect 87:207–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Sanderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanderson, H., Thomsen, M. Ecotoxicological Quantitative Structure–Activity Relationships for Pharmaceuticals. Bull Environ Contam Toxicol 79, 331–335 (2007). https://doi.org/10.1007/s00128-007-9249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-007-9249-9

Keywords

Navigation