Skip to main content
Log in

Pulsed exsolution of magmatic ore-forming fluids in tin-tungsten systems: a SIMS cassiterite oxygen isotope record

  • Letter
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Utilizing in situ oxygen isotope analysis, we demonstrate the potential of cassiterite as a robust recorder of fluid source and evolution. Cassiterite is an ore mineral, and its mineral–water oxygen isotope fractionation factor is only weakly temperature-dependent. Unlike most explored gangue minerals such as quartz, cassiterite can provide a direct and robust archive of ore-forming fluids, e.g., fluid oxygen isotope composition (δ18O values). Core and rim domains of a representative cassiterite crystal from the Piaotang tin-tungsten (Sn-W) deposit, China, are characterized by contrasting δ18O values. Cassiterite δ18O values are –2.14 ± 0.41 ‰ for the core and 2.36 ± 0.36 ‰ for the rim, which equate to fluid δ18O values of ~ 4.1 ‰ (core) and ~ 8.6 ‰ (rim). Additionally, the cassiterite rim is enriched in niobium (Nb) and tantalum (Ta) compared to the mineral core. The δ18O, and Nb and Ta data are interpreted to reflect core to rim crystallization from distinct pulses of magmatic-hydrothermal fluids that possessed a discrete oxygen isotopic, and Nb and Ta composition. Such a pulsed process could be a common feature for Sn-W deposits, and is critical to the formation of giant deposits with high metal grades. Involvement of meteoric water associated with the first mineralization stage reaches ~ 33%, but is limited (~ 7%) in the second (main) mineralization stage. Therefore, cooling induced by fluid mixing may not be necessary for tin deposition, and our new findings invite a reassessment of the role of meteoric water in other Sn-W deposits. Our petrologic modelling shows that fluids exsolved from a 10 – 15 km3 parental granitic magma can yield the Sn-W endowments recorded at Piaotang. Further, during magma fractionation, Sn and W are preferentially transferred into fluids compared to Nb and Ta. As a consequence, fluid chemistry is the primary factor controlling metal endowment and zoning in W-Sn deposits, as observed at Piaotang, and explains the predominant magmatic origin of Nb–Ta deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Carr PA, Norman MD, Bennett VC (2017) Assessment of crystallographic orientation effects on secondary ion mass spectrometry (SIMS) analysis of cassiterite. Chem Geol 467:122–133. https://doi.org/10.1016/j.chemgeo.2017.08.003

    Article  Google Scholar 

  • Chevychelov VY, Zaraisky GP, Borisovskii SE, Borkov DA (2005) Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites. Petrology 13:305–321

    Google Scholar 

  • Chi G-X, Diamond LW, Lu H-Z, Lai J-Q, Chu H-X (2020) Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion. Minerals 11. https://doi.org/10.3390/min11010007

  • Chiaradia M, Caricchi L (2017) Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Sci Rep 7:44523. https://doi.org/10.1038/srep44523

    Article  Google Scholar 

  • D’Errico ME, Lackey JS, Surpless BE, Loewy SL, Wooden JL, Barnes JD, Strickland A, Valley JW (2012) A detailed record of shallow hydrothermal fluid flow in the Sierra Nevada magmatic arc from low-δ18O skarn garnets. Geology 40:763–766. https://doi.org/10.1130/g33008.1

    Article  Google Scholar 

  • Deng X-D, Luo T, Li J-W, Hu Z-C (2019) Direct dating of hydrothermal tungsten mineralization using in situ wolframite U-Pb chronology by laser ablation ICP-MS. Chem Geol 515:94–104. https://doi.org/10.1016/j.chemgeo.2019.04.005

    Article  Google Scholar 

  • Fekete S, Weis P, Driesner T, Bouvier A-S, Baumgartner L, Heinrich CA (2016) Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe. Earth Planet Sci Lett 451:263–271. https://doi.org/10.1016/j.epsl.2016.07.009

    Article  Google Scholar 

  • Gu J-Y (1984) Morphological zonation of tungsten deposits in south China Proceedings of Symposium on Tungsten Geology (Chinese Edition). Geological Publishing House, Nanchang, pp 35–45

  • Harlaux M, Kouzmanov K, Gialli S, Marger K, Bouvier A-S, Baumgartner LP, Rielli A, Dini A, Chauvet A, Kalinaj M, Fontboté L (2021) Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ18O-δ11B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru. Earth Planet Sci Lett 563. https://doi.org/10.1016/j.epsl.2021.116889

  • He Z-Y, Xu X-S, Zou H-B, Wang X-D, Yu Y (2010) Geochronology, petrogenesis and metallogeny of Piaotang granitoids in the tungsten deposit region of South China. Geochem J 44:299–313. https://doi.org/10.2343/geochemj.1.0073

    Article  Google Scholar 

  • Heinrich C (1990) The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ Geol 85:457–481. https://doi.org/10.2113/gsecongeo.85.3.457

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O−HCl and haplogranite-H2O−HF. Contrib Miner Petrol 109:139–150

    Article  Google Scholar 

  • Legros H, Marignac C, Tabary T, Mercadier J, Richchard A, Cuney M, Wang RC, Charles N, Lespinasse MY (2018) The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. Am Miner 103:39–54. https://doi.org/10.2138/am-2018-6196

    Article  Google Scholar 

  • Legros H, Richard A, Tarantola A, Kouzmanov K, Mercadier J, Vennemann T, Marignac C, Cuney M, Wang RC, Charles N, Bailly L, Lespinasse MY (2019) Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi province (China). Chem Geol 508:92–115. https://doi.org/10.1016/j.chemgeo.2018.11.021

    Article  Google Scholar 

  • Lehmann B (2020) Formation of tin ore deposits: A reassessment. Lithos. https://doi.org/10.1016/j.lithos.2020.105756

    Article  Google Scholar 

  • Li X-H, Li W-X, Li Z-X (2007) On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Sci Bull 52:1873–1885. https://doi.org/10.1007/s11434-007-0259-0

    Article  Google Scholar 

  • Li Y, Li X-H, Selby D, Li J-W (2018) Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology 46:7–10. https://doi.org/10.1130/g39504.1

    Article  Google Scholar 

  • Li Y, He S, Zhang R-Q, Bi X-W, Feng L-J, Tang G-Q, Wang W-Z, Huang F, Li X-H (2021) Cassiterite oxygen isotopes in magmatic-hydrothermal systems in situ microanalysis, fractionation factor and application. Miner Deposita. https://doi.org/10.1007/s00126-021-01068-x

    Article  Google Scholar 

  • Li Y, Allen MB, Li X-H (2022) Millennial pulses of ore formation and an extra-high Tibetan Plateau. Geology. https://doi.org/10.1130/G49911.1

  • Liu P, Mao J-W, Lehmann B, Weyer S, Horn I, Mathur R, Wang F-Y, Zhou Z-H (2021a) Tin isotopes via fs-LA-MC-ICP-MS analysis record complex fluid evolution in single cassiterite crystals. Am Miner 106:1980–1986. https://doi.org/10.2138/am-2021-7558

    Article  Google Scholar 

  • Liu X-C, Wang W-L, Zhang D-H (2021b) The Mechanisms Forming the Five–Floor Zonation of Quartz Veins: A Case Study in the Piaotang Tungsten–Tin Deposit, Southern China. Minerals 11. https://doi.org/10.3390/min11080883

  • Mao J-W, Ouyang H-G, Song S-W, Santosh M, Yuan S-D, Zhou Z-H, Zheng W, Liu H, Liu P, Cheng Y-B, Chen M-H (2019) Geology and metallogeny of tungsten and tin deposits in China In: Publications EGS (ed) Mineral Deposits of China. pp 411–482

  • Mercer CN, Reed MH, Mercer CM (2015) Time Scales of Porphyry Cu Deposit Formation: Insights from Titanium Diffusion in Quartz. Econ Geol 110:587–602

    Article  Google Scholar 

  • Schmidt C, Romer RL, Wohlgemuth-Ueberwasser CC, Appelt O (2020) Partitioning of Sn and W between granitic melt and aqueous fluid. Ore Geol Rev 117. https://doi.org/10.1016/j.oregeorev.2019.103263

  • Shmulovich KI, Landwehr D, Simon K, Heinrich W (1999) Stable isotope fractionation between liquid and vapour in water–salt systems up to 600 °C. Chem Geol 157:343–354

    Article  Google Scholar 

  • Sillitoe RH, Lehmann B (2021) Copper-rich tin deposits. Miner Deposita. https://doi.org/10.1007/s00126-021-01078-9

    Article  Google Scholar 

  • Tanelli G (1982) Geological setting, mineralogy and genesis of tungsten mineralization in Dayu district, JiangXi (People’s Republic of China): An outline. Miner Deposita 17:279–294. https://doi.org/10.1007/bf00206476

    Article  Google Scholar 

  • Wang X-D, Ni P, Yuan S-D, Wu S-H (2013) Fluid Inclusion Studies on Coexisting Cassiterite and Quartz from the Piaotang Tungsten Deposit, Jiangxi Province, China. Acta Geol Sin 87:850–859 (In Chinese with English abstract)

    Article  Google Scholar 

  • Wilkinson JJ, Stoffell B, Wilkinson CC, Jeffries TE, Appold MS (2009) Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323:764–767. https://doi.org/10.1126/science.1164436

    Article  Google Scholar 

  • Wood SA, Samson IM (2000) The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl. Econ Geol 95:143–182. https://doi.org/10.2113/gsecongeo.95.1.143

    Article  Google Scholar 

  • Yuan S-D, Williams-Jones AE, Romer RL, Zhao P-L, Mao J-W (2019) Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China. Econ Geol 114:1005–1012. https://doi.org/10.5382/econgeo.4669

    Article  Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197. https://doi.org/10.1016/j.gca.2008.01.034

    Article  Google Scholar 

  • Zhang Q, Zhang R-Q, Gao J-F, Lu J-J, Wu J-W (2018) In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China. Ore Geol Rev 99:166–179. https://doi.org/10.1016/j.oregeorev.2018.06.004

    Article  Google Scholar 

  • Zhang R-Q, Lu J-J, Lehmann B, Li C-Y, Li G-L, Zhang L-P, Guo J, Sun W-D (2017) Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geol Rev 82:268–284. https://doi.org/10.1016/j.oregeorev.2016.10.039

    Article  Google Scholar 

  • Zhao P-L, Zajacz Z, Tsay A, Yuan S-D (2021) Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2021.09.011

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Key Research and Development Program of China (2018YFA0702600), National Natural Science Foundation of China (42022022), Pioneer Hundred Talents Program of Chinese Academy of Sciences and CNNC Science Fund for Talented Young Scholars (QNYC2019-2). We thank Bernd Lehmann and Nicolas J. Saintilan for very informative suggestions and efficient editorial handling, as well as the detailed and pertinent reviews by Patrick Carr and Matthieu Harlaux that greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Additional information

Editorial handling: B. Lehmann

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 406 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, RQ., He, S. et al. Pulsed exsolution of magmatic ore-forming fluids in tin-tungsten systems: a SIMS cassiterite oxygen isotope record. Miner Deposita 57, 343–352 (2022). https://doi.org/10.1007/s00126-022-01093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-022-01093-4

Keywords

Navigation