Skip to main content
Log in

Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: implications for mineralization in ultramafic rocks

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The recently explored Tianzuo hydrothermal field in serpentinized ultramafic rocks of the amagmatic segment of the ultraslow-spreading Southwest Indian Ridge displays high-temperature sulfide mineralization (isocubanite, sphalerite, and minor pyrrhotite) and low-temperature (pyrite and covellite) phases. Pyrite can be subdivided into pyrite-I and -II, with the former generally having a pseudomorphic texture after pyrrhotite and the latter typically growing around isocubanite, sphalerite, and pyrite-I or occurring as individual grains in quartz veinlets. The sulfide minerals have the greatest range of δ34S values (− 23.8 to 14.1‰), found so far among modern sediment-starved ridges, with distinct δ34S values for low- and high-temperature mineral phases. The high δ34S values of isocubanite (9.6 to 12.2‰) and sphalerite (9.1 to 14.1‰) suggest that sulfate, which precipitated from seawater during an early low-temperature phase of hydrothermal circulation, was the main sulfur source for these sulfides. Pyrite-II has the lowest and most variable δ34S values (− 23.8 to − 3.6‰), suggesting microbial sulfate reduction. Pyrite-I has variable and generally positive δ34S values (− 0.1 to 12.0‰), with sulfur being inherited from pyrrhotite from the original thermochemical reduction of sulfate, mixed with volcanogenic sulfur. Intermittent magmatism represented by gabbroic intrusions, and high permeability caused by well-developed fractures associated with detachment faults, contributed to the formation of sulfides in the Tianzuo hydrothermal field. These factors possibly control sulfide mineralization in amagmatic segments of ultraslow-spreading ridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen DE, Seyfried WE Jr (2004) Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochim Cosmochim Acta 68(6):1347–1354

    Google Scholar 

  • Alt JC, Shanks WC III (1998) Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction. J Geophys Res 103(B5):9917–9929

    Google Scholar 

  • Alt JC, Shanks WC III (2011) Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). Earth Planet Sci Lett 310:73–83

    Google Scholar 

  • Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15° 20′ N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8(8):Q08002

    Google Scholar 

  • Baker ET (2009) Relationships between hydrothermal activity and axial magma chamber distribution, depth, and melt content. Geochem Geophys Geosyst 10(6):329–332

    Google Scholar 

  • Baker ET, Chen YJ, Morgan JP (1996) The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet Sci Lett 142(1):137–145

    Google Scholar 

  • Baker ET, Edmonds HN, Michael PJ, Wolfgang B, Dick HJB, Snow JE, Walker SL, Banerjee NR, Langmuir CH (2004) Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochem Geophys Geosyst 5(8):217–228

    Google Scholar 

  • Barrie CT, Hannington MD, Bleeker WI (1999) The giant Kidd Creek volcanic-associated massive sulfide deposit, Abitibi Subprovince, Canada. Econ Geol 8:247–269

    Google Scholar 

  • Beaulieu SE, Baker ET, German CR, Maffei A (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochem Geophys Geosyst 14(11):4892–4905

    Google Scholar 

  • Bischoff JL, Seyfried WE Jr (1978) Hydrothermal chemistry of sea water from 25° to 350°C. Am J Sci 278:838–860

    Google Scholar 

  • Bogdanov YA, Bortnikov NS, Vikent’ev IV, Gurvich EG, Sagalevich AM (1997) A new type of modern mineral-forming system: black smokers of the hydrothermal field at 14° 45′ N latitude, Mid-Atlantic Ridge. Geol Depos 39(1):58–78

    Google Scholar 

  • Bühn B, Santos RV, Dardenne MA, de Oliveira CG (2012) Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS. Chem Geol 312-313:163–176

    Google Scholar 

  • Butler IB, Fallick AE, Nesbitt RW (1998) Mineralogy, sulphur isotope geochemistry and the development of sulphide structures at the Broken Spur hydrothermal vent site, 29° 10′ N, Mid-Atlantic Ridge. J Geol Soc London 155:773–785

    Google Scholar 

  • Canfield DE (2002) Biogeochemistry of sulfur isotopes, in Stable Isotope Geochemistry, Rev. Mineral., vol. 43, edited by J. W. Valley and D. R. Cole, Mineral. Soc. of Am., Washington, D. C: 607–633

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur-isotope studies. Nature 382:127–132

    Google Scholar 

  • Cannat M, Rommevaux-Jestin C, Sauter D, Deplus C, Mendel V (1999) Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J Geophys Res 104(B10):22,825−22,843

  • Cannat M, Rommevaux-Jestin C, Fujimoto H (2003) Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochem Geophys Geosyst 4(8):9104

    Google Scholar 

  • Cannat M, Sauter D, Mendel V, Ruellan E, Okino K, Escartin J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34(7):605–608

    Google Scholar 

  • Cannat M, Sauter D, Bezos A, Meyzen C, Humler E, Le Rigoleur M (2008) Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem Geophys Geosyst 9:Q04002. https://doi.org/10.1029/2007GC001676

    Article  Google Scholar 

  • Cao H, Sun ZL, Liu CL, Jiang XJ, He YJ, Huang W, Shang LN, Wang LB, Zhang XL, Geng W, Shi MJ, Li DY (2018) The metallogenic mechanism and enlightenment of hydrothermal sulfide from the ultramafic-hosted hydrothermal systems at ultra-slow spreading ridge. HaiyangXuebao 40(4):61–75. https://doi.org/10.3969/j.issn.0253-4193.2018.04.006 (in Chinese with English abstract)

    Article  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14′ N, MAR). Chem Geol 191(4):345–359

    Google Scholar 

  • Chen J, Tao CH, Liang J, Liao SL, Dong CW, Li HM, Li W, Wang Y, Yue XH, He YH (2018) Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63E°. Acta Oceanol Sin 11:61–67

    Google Scholar 

  • Cherkashev G, Ivanov VN, Bel’tenev VI, Lazareva LI, Rozhdestvenskaya II, Samovarov ML, Poroshina I, Sergeyev MB, Stepanova TV, Dobretsova I (2010) Seafloor massive sulfides from the Equatorial Mid-Atlantic Ridge: new discoveries and perspectives. Mar Georesour Geotechnol 28(3):222–239. https://doi.org/10.1080/1064119X.2010.483308

    Article  Google Scholar 

  • Cherkashev G, Ivanov VN, Bel’tenev VI, Lazareva LI, Rozhdestvenskaya II, Samovarov ML, Poroshina I, Sergeyev MB, Stepanova TV, Dobretsova I, Kuznetsov VY (2013) Massive sulfide ores of the northern equatorial Mid-Atlantic Ridge. Mar Geol 53(5):607–619

    Google Scholar 

  • Chiba H, Uchiyama N, Teagle DAH (1998) Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. College station (Ocean Drilling Program): 85–90

  • Craddock PR, Rouxel OJ, Ball LA, Bach W (2008) Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem Geol 253:102–113

    Google Scholar 

  • Detmers J, Brüchert V, Habicht KS, Kuever J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Environ Microbiol 67:888–894

    Google Scholar 

  • Dias ÁS, Barriga F (2006) Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36° 34′ N; 33° 26′ W) at MAR, Mar. Geol. 225(1–4):157–175. https://doi.org/10.1016/j.margeo.2005.07.013

    Article  Google Scholar 

  • Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426:405–412

    Google Scholar 

  • Douville E, Charlou JL, Oelkers EH, Bienvenu P, Colon CFJ, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The rainbow vent fluids (36° 14′ N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184(1–2):37–48

    Google Scholar 

  • Duckworth RC, Knott R, Fallick AE, Rickard D, Murton BJ, van Dover C (1995) Mineralogy and Sulphur isotope geochemistry of the Broken Spur sulphides, 29° N. Mid-Atlantic Ridge 87:175–189

    Google Scholar 

  • Engel CG, Fisher RL (1975) Granitic to ultramafic rock complexes of the Indian Ocean ridge system, western Indian Ocean. Geol Soc Am Bull 86:1553–1578

    Google Scholar 

  • Escartin J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455(7214):790–794

    Google Scholar 

  • Fleet ME (1970) Structural aspects of the marcasite-pyrite transformation. Can Mineral 10(2):225–231

    Google Scholar 

  • Fornari DJ, Haymon RM, Perfit MR, Gregg TKP, Edwards MH (1998) Axial summit trough of the East Pacific Rice 9°-10°N: geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridge. J Geophys Res Solid Earth 103(B5):9827–9855

    Google Scholar 

  • Fouquet Y, Charlou JL, Barriga F (2002) Modern seafloor hydrothermal deposits hosted in ultramafic rocks. Geol. Soc. Am. Abstracts with Programs, 34(6)A: Paper No. 194–7

  • Fouquet Y, Cambon P, Etoubleau J, Charlou JL, Ondréas H, Barriga FJ, Cherkashev G, Semkova T, Poroshina I, Bohn M (2010) Geodiversity of hydrothermal processes along the mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Divers Hydrothermal Syst Slow Spreading Ocean Ridges 188:321–367

    Google Scholar 

  • Fu J, Hu Z, Zhang W, Yang L, Liu Y, Li M, Zong K, Gao S, Hu S (2016) In situ sulfur isotopes (δ34S and δ33S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICPMS. Anal Chim Acta 911:14–26

    Google Scholar 

  • German CR and Lin J (2004) The thermal structure of the oceanic crust, ridge-spreading and hydrothermal circulation: how well do we understand their inter-connections? in Mid-ocean ridges: hydrothermal interactions between the lithosphere and oceans, Geophys. Monogr. Ser., vol. 148, edited by C. R. German, J. Lin, and L. M. Parson, pp. 1–18, AGU, Washington, D.C.

  • German CR, Parson LM (1998) Distributions of hydrothermal activity along the Mid-Atlantic Ridge: interplay of magmatic and tectonic controls. Earth Planet Sci Lett 160(3):327–341

    Google Scholar 

  • German CR, Klinkhammer GP, Rudnicki MD (1996) The Rainbow hydrothermal plume, 36° 15′ N, MAR. Geophys Res Lett 23(21):2979–2982

    Google Scholar 

  • German CR, Petersen S, Hannington MD (2016) Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? Chem Geol 420:114–126

    Google Scholar 

  • Goldhaber MB, Kaplan IR (1975) Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci 119:42–55

    Google Scholar 

  • Gow PA, Wall VJ, Oliver NHS, Valenta RK (1994) Proterozoic iron oxide (Cu–U–Au–REE) deposits: further evidence of hydrothermal origin. Geology 22:633–636

    Google Scholar 

  • Hannington MD, Scott SD (1988) Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial-Seamount, Juan de Fuca ridge. Can Mineral 26:603–625

    Google Scholar 

  • Hannington MD, de Ronde CD, Peterse S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littelton, pp 111–141

    Google Scholar 

  • Hannington MD, Jamieson J, Monecke T, Petersen S (2010) Modern sea-floor massive sulfides and base metal resources: toward an estimate of global sea-floor massive sulfide potential. Soc Econ Geol Spec Publ 15:317–338

    Google Scholar 

  • Herzig PM, Hannington MD, Arribas A (1998) Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Mineral Deposita 33:226–237

    Google Scholar 

  • Horner-Johnson BC, Gordon RG, Cowles SM, Argus DF (2005) The angular velocity of Nubia relative to Somalia and the location of the Nubia-Somalia-Antarctica triple junction. Geophys J Int 162(1):221–238

    Google Scholar 

  • Ildefonse B, Blackman DK, John BE, Ohara Y, Miller DJ, Macleod CJ (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35(7):623–626

    Google Scholar 

  • Ishihara S, Sasaki A (1989) Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith-a reconnaissance study. Geology 17:788–791

    Google Scholar 

  • Janecky DR, Shanks WC III (1988) Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides, and subjacent alteration zones. Can Mineral 26:805–825

    Google Scholar 

  • Kase K, Yamamoto M, Shibata T (1990) Copper-rich sulfide deposits near 23° N, Mid-Atlantic Ridge: chemical composition, mineral chemistry, and sulfur isotopes: Proceedings of the Ocean Drilling Program. Sci Res 106(109):163–172

    Google Scholar 

  • Kelley DS, Karson JA, Blackman D, Fruh-Green GL, Butterfied D, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412:145–149. https://doi.org/10.1038/35084000

    Article  Google Scholar 

  • Knott R, Fallick AE, Rickard D, Bäcker H (1995) Mineralogy and sulphur isotope characteristics of a massive sulphide boulder, Galapagos Rift, 85°55′ W: Geological Society of London special Publication 87: 207–222

  • Knott R, Fouquet Y, Honnorez J, Petersen S, Bohn M (1998) Petrology of hydrothermal mineralization: a vertical section through the TAG mound. Proc Ocean Drill Program Sci Results 158:5–26

    Google Scholar 

  • Lalou C, Münch U, Halbach P, Reyss JL (1998) Radiochronological investigation of hydrothermal deposits from the MESO zone, Central Indian Ridge. Mar Geol 149(1–4):243–254

    Google Scholar 

  • Lein AY, Ulyanova NV, Ulyanov AA, Cherkashev GA, Stepanova TV (2001) Mineralogy and geochemistry of sulfide ores in ocean-floor hydrothermal fields associated with serpentinite protrusions. Russ J Earth Sci 3(5):371–393

    Google Scholar 

  • Li JB, Jian HC, Chen YS, Singh SC, Ruan AG, Qiu XL, Zhao MH, Wang XG, Niu XG, Ni JY, Zhang JZ (2015) Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophys Res Lett 42(8):2656–2663

    Google Scholar 

  • Liao SL, Tao CH, Li HM, Barriga FJAS, Liang J, Yang WF, Yu JY, Zhu GW (2018) Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geol Rev 96:13–27

    Google Scholar 

  • Lowell RP, Rona PA (2002) Seafloor hydrothermal systems driven by the serpentinization of peridotite. Geophys Res Lett 29(11(26)):1–4

    Google Scholar 

  • Lowell RP, Yao YF (2002) Anhydrite precipitation and the extent of hydrothermal recharge zones at ocean ridge crests. J Geophys Res 107(B9):2183–EPM 2-9. https://doi.org/10.1029/2001JB001289

    Article  Google Scholar 

  • Lowell RP, Yao YF, Germanovich LN (2003) Germanovich, anhydrite precipitation and the relationship between focused and diffuse flow in seafloor hydrothermal systems. J Geophys Res 108(B9):2424. https://doi.org/10.1029/2002JB002371

    Article  Google Scholar 

  • Lusk J, Bray DM (2002) Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu–Fe–S and Fe–S systems at 1 bar and temperatures between 185 and 460 °C. Chem Geol 192(3–4):227–248

    Google Scholar 

  • Marques AFA, Barriga FJAS, Scott SD (2007) Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: from serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides. Mar Geol 245(1–4):20–39

    Google Scholar 

  • Mason PRD, Kosler J, de Hoog JCM, Sylvester PJ, Meffan-Main S (2006) In situ determination of sulfur isotopes in sulfur-rich materials by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). J Anal At Spectrom 21:177–186

    Google Scholar 

  • McCaig AM, Cliff RA, Escartin J, Fallick AE, Macleod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35(10):935–938

    Google Scholar 

  • Melchert B, Devey Colin W, German CR, Lackschewitz K, Seifert R, Walter M, Mertens C, Yoerger DR, Baker ET, Paulick H, Nakamura K (2008) First evidence for high-temperature off-axis venting of deep crustal/mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275:61–69. https://doi.org/10.1016/j.epsl.2008.08.010

    Article  Google Scholar 

  • Minshull TA, Muller MR, White RS (2006) Crustal structure of the Southwest Indian Ridge at 66° E: seismic constraints. Geophys J Int 166(1):135–147

    Google Scholar 

  • Mozgova NN, Borodaev YS, Gablina IF, Cherkashev GA, Stepanova TV (2005) Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide mounds. Lithol Miner Resour 40(4):293–319

    Google Scholar 

  • Münch U, Lalou C, Halbach P, Fujimoto H (2001) Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63° 56′ E-mineralogy, chemistry and chronology of sulfide samples. Chem Geol 177(3–4):341–349

    Google Scholar 

  • Nayak B, Halbach P, Pracejus B, Münch U (2014) Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis. Ore Geol Rev 63:115–128

    Google Scholar 

  • O'Hanley DS (1992) Solution to the volume problem in serpentinization. Geology 20(8):705–708

    Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, pp 517–611

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567

    Google Scholar 

  • Ohmoto H, Mizukami M, Drummond SE, Eldridge CS, Pisutha-Arnond V, Lenagh TC (1983) Chemical processes of Kuroko formation. Econ Geol Monogr 5:570–604

    Google Scholar 

  • Ono S, Shanks WC III, Rouxel OJ, Rumble D (2007) S-33 constrains on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71(5):1170–1182

    Google Scholar 

  • Peter JM, Shanks WC III (1992) Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas basin, Gulf of California, USA. Geochim Cosmochim Acta 56:2025–2040

    Google Scholar 

  • Peters JM, Strauss H, Farquhar J, Ockert C, Eickmann B, Jost CL (2010) Sulfur cycling at the Mid-Atlantic Ridge: a multiple sulfur isotope approach. Chem Geol 269:180–196

    Google Scholar 

  • Ranero CR, Reston TJ (1999) Detachment faulting at ocean core complexes. Geology 27(11):983–986

    Google Scholar 

  • Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotope geochemistry of ocean water sulphate. Geochim Cosmochim Acta 42:377–382

    Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004) Copper isotope systematics of the Lucky Strike, Rainbow and Logatchev seafloor hydrothermal fields on the Mid Atlantic Ridge. Econ Geol 99:585–600

    Google Scholar 

  • Rouxel O, Shanks WC III, Bach W, Edwards K (2008) Intergrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific rise 9-10° N. Chem Geol 252(3–4):214–227

    Google Scholar 

  • Sakai H, Des Marais DJ, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen, and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2442

    Google Scholar 

  • Santosh M, Masuda H (1991) Reconnaissance oxygen and sulfur isotopic mapping of Pan-African alkali granites and syenites in the southern Indian Shield. Geochem J 25:173–185

    Google Scholar 

  • Sauter D, Patriat P, Rommevaux-Jestin C, Cannat M, Briais A, Gallieni Shipboard Scientific Party (2001) The Southwest Indian Ridge between 49° 15′ E and 57° E: focused accretion and magma redistribution. Earth Planet Sci Lett 192(3):303–317

    Google Scholar 

  • Sauter D, Carton H, Mendel V, Munschy M, Rommevaux-Jestin C, Schott JJ, Whitechurch H (2004) Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50° 30′ E, 55° 30′ E and 66° 20′ E): implications for magmatic processes at ultraslow-spreading centers. Geochem Geophys Geosyst 5:Q05K08. https://doi.org/10.1029/2003GC000581

    Article  Google Scholar 

  • Sauter D, Cannat M, Meyzen C, Bezos A, Patriat P, Humler E, Debayle E (2009) Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46° E and 52° 20′ E: interaction with the Crozet hotspot? Geophys J Int 179(2):687–699

    Google Scholar 

  • Sauter D, Cannat M, Rouméjon S, Andreani M, Briot D, Bronner A, Brunelli D, Carlut J, Delacour A, Guyader V, Macleod CJ, Manatschal G, Mendel V, Ménez B, Pasini V, Ruellan E, Searle R (2013) Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat Geosci 6(4):314–320

    Google Scholar 

  • Schmidt K, Koschinsky A, Garbe-Schönberg D, de Carvalho LM, Seifert R (2007) Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15° N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem Geol 242(1):1–21

    Google Scholar 

  • Schwarzenbach E, Früh-Green GL, Bernasconi SM, Alt JC, Shanks WC III, Gaggero L, Crispini L (2012) Sulfur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian ophiolites with oceanic serpentinites. Geochim Cosmochim Acta 91:283–305

    Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61:633–677

    Google Scholar 

  • Seyfried WE Jr, Bischoff JL (1981) Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implication for the transport of heavy metals. Geochim Cosmochim Acta 45:135–147

    Google Scholar 

  • Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems. Rev Mineral Geochem 43:469–525

    Google Scholar 

  • Shanks WC III, Seyfried WE Jr (1987) Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction. J Geophys Res 92:11387–11399

    Google Scholar 

  • Shanks WC III, Bohlke JK, Seal RR (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions, vol 91. Geophys Monogr, pp 194–221

  • Shibata T, Thompson G, Frey FA (1979) Tholeiitic and alkali basalts from the Mid-Atlantic Ridge at 43°N. Contrib Mineral Petrol 70:127–141

    Google Scholar 

  • Sleep NII (1991) Hydrotherma circulation, anhydrite precipitation, and thermal structure at ridge axes. J Geophys Res 96:2375–2387

    Google Scholar 

  • Standish JJ, Sims KWW (2010) Young off-axis volcanism along the ultraslow spreading Southwest Indian Ridge. Nat Geosci 3:286–292

    Google Scholar 

  • Tao CH, Lin J, Guo SQ, Chen YS, Wu GH, Han XQ, German CR, Yoerger DR, Zhou N, Li HM, Su X, Zhu J (2012) First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 40(1):47–50

    Google Scholar 

  • Tao CH, Li HM, Jin XB, Zhou JP, Wu T, He YH, Deng XM, Gu CH, Zhang GY, Liu WY (2014) Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin Sci Bull 59(19):2266–2276

    Google Scholar 

  • Tao CH, Seyfried WE Jr, Lowell RP, Liu YL, Liang J, Guo ZK, Ding K, Zhang HT, Liu J, Qiu L, Egorv I, Liao SL, Zhao MH, Zhou JP, Deng XM, Li HM, Wang HC, Cai W, Zhang GY, Zhou HW, Lin J, Li W (2020) Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat Commun. https://doi.org/10.1038/s41467-020-15062-w

  • Wang YJ (2012) Comparision study of mineralization of Kairei and Edmond active hydrothermal fields in central Indian ridge. Doctoral disseration. 129 pp. Zhejiang University, China. (in Chinese with English abstract)

  • Wetzel LR, Shock EL (2000) Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J Geophys Res Solid Earth 105(B4):8319–8340

    Google Scholar 

  • Woodruff LG, Shanks WC III (1988) Sulfur isotope study of chimney minerals and vent fluids from 21° N, East Pacific Rise: hydrothermal sulfur sources and disequilibrium sulfate reduction. J Geophys Res 93(B5):4562–4572

    Google Scholar 

  • Wortmann UG, Bernasconi SM, Böttcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650

    Google Scholar 

  • Yang AY, Zhao TP, Zhou MF, Deng XG (2017a) Isotopically enriched N-MORB: a new geochemical signature of off-axis plume-ridge interaction-a case study at 50° 28′ E, Southwest Indian Ridge. J Geophys Res Solid Earth 122:191–213

    Google Scholar 

  • Yang WF, Tao CH, Li HM, Liang J, Liao SL, Long JP, Ma ZB, Wang LS (2017b) 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Mar Geophys Res 38:1–13

    Google Scholar 

  • Ye J (2010) Mineralization of polymetallic sulfides on ultraslow spreading Southwest Indian Ridge at 49.6° E. Doctoral disseration. 129 pp. Graduate University of Chinese Academy of Sciences, China. (in Chinese with English abstract)

  • Yuan B, Yu HJ, Yang YM, Zhao YX, Yang JC, Xu Y, Lin Z (2018) Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49.6° E. Chem Geol 482:46–60

    Google Scholar 

  • Zeng ZG, Ma Y, Chen S, Selby D, Wang XY, Yin XB (2016) Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation. Ore Geol Rev 87:155–171

    Google Scholar 

  • Zhou HY, Dick HJB (2013) Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 494(7436):195–200. https://doi.org/10.1038/nature11842

    Article  Google Scholar 

  • Zhu ZY, Cook NJ, Yang T, Ciobanu CL, Zhao KD, Jiang SY (2016) Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: potential analytical problems, improvements and implications. Fortschr Mineral 6:110

    Google Scholar 

  • Zierenberg RA (1994) Sulfur content of sediments and sulfur isotope values of sulfide and sulfate minerals from Middle Valley: Proceedings of the Ocean Drilling Program. Sci Res 139:739–748

    Google Scholar 

  • Zierenberg RA, Shanks WC III (1988) Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Can Mineral 26:737–753

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Crystal LaFlamme, an anonymous reviewer, Dr. Marco Fiorentini (Editor) and Dr. Bernd Lehmann (Editor-in-Chief) for their thoughtful reviews and constructive comments.

Funding

This work is financially supported by the National Key Research and Development Program of China under contract nos. 2017YFC0306603, 2018YFC0309901, 2016YFC0304905, and 2018YFC0309902; the National Science Foundation for Young Scientists of China (Grant Nos. 41803037 and 41806076); the Foundation for Young Scientists of Jiangsu Province (Grant No. BK20180511); the Fundamental research Funds for the Central Universities (Grant Nos. 2017B03314 and 2017B04514); the COMRA Major Project under contract nos. DY135-S1-1-01 and DY135-S1-1-02; the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ16D060008), Scientific Research Fund of the Second Institute of Oceanography (Grant No. JG1609), Macao Science and Technology Development Fund (FDCT-002/2018/A1), China Postdoctoral Science Foundation (2019M652043), and Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education (2019YSJS03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Tao.

Additional information

Editorial handling: M. Fiorentini

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Back-scattered electron images and EDS element mappings showing the distribution of elements S, Fe, Cu, Zn, Si, and Mg in sulfides and surrounding matrix. (a1–a6) Isocubanite surrounded by pyrite-II; (b1–b6) Sphalerite with exsolution of isocubanite; (c1–c3) Subhedral sphalerite grain; (d1–d3) Pyrrhotite replaced by pyrite-II; (e1–e6) Pyrite-I replaced by pyrite-II; (f1–f6) Fibrous covellite in the quartz matrix. Abbreviations are as in Fig. 2.@ (DOCX 35485 kb)

ESM 2

In situ sulfur isotopic compositions of sulfide minerals in the Tianzuo hydrothermal field. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Tao, C., Dias, Á.A. et al. Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: implications for mineralization in ultramafic rocks. Miner Deposita 56, 991–1006 (2021). https://doi.org/10.1007/s00126-020-01025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-01025-0

Keywords

Navigation