Skip to main content

Advertisement

Log in

Early pyrite and late telluride mineralization in vanadium-rich gold ore from the Oroya Shoot, Paringa South mine, Golden Mile, Kalgoorlie: 3. Ore mineralogy, Pb-Te (Au-Ag) melt inclusions, and stable isotope constraints on fluid sources

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Oroya Shoot (> 62 t Au) in the giant Golden Mile deposit, Yilgarn Craton, Western Australia is controlled by reverse faults, which offset altered quartz diorite porphyry but are crosscut by a late-mineralization kersantite dyke (> 2642 ± 6 Ma). Oroya stage 1 ore (12–14 g/t Au) is characterized by chert-like quartz, Fe-chlorite, siderite and pyrite (10–20 vol%), minor arsenopyrite, chalcopyrite and sphalerite, and accessory pyrrhotite, gersdorffite, and melonite. Dendritic pyrite and arsenopyrite-chlorite thermometry indicate rapid precipitation from an H2S-dominant fluid of intermediate sulfidation and low oxidation state cooling from 450–400 to 340 °C. Oroya stage 2 ore (120–600 g/t Au) forms veins and breccia filled or cemented by quartz, muscovite (≤ 13.2 wt% V2O3), ankerite, chlorite, and tourmaline (≤ 14.7 wt% V2O3). The assemblage pyrite-arsenopyrite-chalcopyrite brackets telluride deposition. Bornite-chalcopyrite aggregates, sphalerite, and tetrahedrite are associated with native gold, montbrayite, altaite, calaverite, petzite, tellurantimony, coloradoite, and melonite. Myrmekitic altaite-tellurium ± sylvanite and altaite-krennerite symplectites represent melt droplets deposited at > 400 °C and log fTe2 = − 4 bar (400 °C, 200 MPa). Tellurium fugacity declined as the fluid cooled during the deposition of native gold and free telluride grains terminating in melonite replacement at 340–300 °C. Pyrite-nolanite- and pyrite-magnetite-telluride assemblages suggest oxidation states up to 2 log units higher than during stage 1. After telluride deposition, the fluid evolved to a high sulfidation state (log fS2 = − 5 bar at 300 °C) and increased salinity indicated by digenite-covellite and Cl-bearing altaite. The average ore is enriched in lithophile (K, Rb, Cs), siderophile (Fe, V, Ni, W), and chalcophile elements (e.g., Te, Se, Cu, Zn, Pb) implicating local monzodiorite plutons as the fluid source. Stable isotope data from the Oroya kersantite and from Cu-Au skarn and monzodiorite-granodiorite stocks southeast of Kalgoorlie constrain the composition of the magmatic fluid to δ13CPDB = − 3.0 to − 2.2‰ and δ18OSMOW = 8.3 to 9.7‰. In the Golden Mile, the fluid oxygen isotope ratios of the gold ore bodies (8.2 to 9.8‰) are consistent with I-type magmatic water. The fluid carbon isotope ratios of all altered rocks (δ13CPDB = − 1.7 to − 0.5‰) are 13C-enriched, perhaps due to the reduction of fluid CO2 to CH4 by interaction with ferrous greenstones close to the intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Afifi AM, Kelly WC, Essene EJ (1988a) Phase relations among tellurides, sulphides and oxides: II. Applications to telluride-bearing ore deposits. Econ Geol 83:395–404

    Article  Google Scholar 

  • Afifi AM, Kelly WC, Essene EJ (1988b) Phase relations among tellurides, sulphides and oxides: I. Thermochemical data and calculated equilibria. Econ Geol 83:377–394

    Article  Google Scholar 

  • Bard JP (1986) Microtextures of igneous and metamorphic rocks. Reidel, Dordrecht 264 pp

    Book  Google Scholar 

  • Barton PB Jr, Skinner BJ (1979) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 278–403

    Google Scholar 

  • Bateman R, Costa S, Swe T, Lambert D (2001) Archaean mafic magmatism in the Kalgoorlie area of the Yilgarn Craton, Western Australia: a geochemical and Nd isotopic study of the petrogenetic and tectonic evolution of a greenstone belt. Precambrian Res 108:75–112

    Article  Google Scholar 

  • Cabri LJ (1965) Phase relations in the Au-Ag-Te system and their mineralogical significance. Econ Geol 60:1569–1606

    Article  Google Scholar 

  • Cassidy KF, Champion DC, Krapez B, Barley ME, Brown SJA, Blewett RS, Groenewald PB, Tyler IM (2006) A revised geological framework for the Yilgarn Craton, Western Australia. Geological Survey of Western Australia, Record 2006/8, 8 pp

  • Chang LLY, Howie RA, Zussman J (1998) Non-silicates: sulphates, carbonates, phosphates, halides. In: Rock-forming minerals, vol 5B, 2nd edn. The Geological Society, London

    Google Scholar 

  • Ciobanu CL, Cook NJ, Pring A, Brugger J, Danyushevsky LV, Shimizu M (2009) ‘Invisible gold’ in bismuth chalcogenides. Geochim Cosmochim Acta 73:1970–1999

    Article  Google Scholar 

  • Claoué-Long JC, Compston W, Cowden A (1988) The age of the Kambalda greenstones resolved by ion-microprobe: implications for Archaean dating methods. Earth Planet Sci Lett 89:239–259

    Article  Google Scholar 

  • Compston W, Williams IS, Campbell IH, Gresham JJ (1986) Zircon xenocrysts from Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda-Norseman greenstones. Earth Planet Sci Lett 76:299–311

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Longman House, Burnt Mill, Harlow

    Google Scholar 

  • Drummond BJ, Goleby BR, Swager CP (2000) Crustal signature of Late Archaean tectonic episodes in the Yilgarn craton, Western Australia: evidence from deep seismic sounding. Tectonophysics 329:193–221

    Article  Google Scholar 

  • Einaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. SEG Spec Publ 10:285–313

    Google Scholar 

  • Fleet ME (2003) Sheet silicates: micas. In: Rock-forming minerals, vol 3A, 2nd edn. The Geological Society, London

    Google Scholar 

  • French BM (1971) Stability relations of siderite (FeCO3) in the system Fe-C-O. Am J Sci 271:37–78

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. USGS Professional Paper 440-KK

  • Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. Rev Mineral 25:1–9

    Google Scholar 

  • Gatehouse BM, Grey IE, Nickel EH (1983) The crystal chemistry of nolanite, (V, Fe, Ti, Al)10O14(OH)2, from Kalgoorlie, Western Australia. Am Mineral 68:833–839

    Google Scholar 

  • Gauthier L, Hagemann S, Robert F (2007) The geological setting of the Golden Mile gold deposit. In: Kalgoorlie WA, Bierlein FP, Knox-Robinson CM (eds) Kalgoorlie 2007, old ground, new knowledge, Abstracts. Geoscience Australia, Record 2007/14, pp 181–185

  • Genkin AD, Safonov YG, Vasudev VN, Krishna Rao B, Boronikhin A, Vyalsov LN, Gorshkov AI, Mokhov AV (1985) Kolarite PbTeCl2 and radhakrishnaite PBTe3(Cl,S)2, new mineral species from the Kolar gold deposit, India. Can Mineral 23:501–506

    Google Scholar 

  • Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character and genesis of gold deposits in metamorphic terranes. Econ Geol 100th Anniv Vol, pp 407–450

  • Golding LY (1978) Mineralogy, geochemistry and origin of the Kalgoorlie gold deposits, Western Australia. Dissertation, University of Melbourne, 402 pp

  • Golding SD, Wilson AF (1987) Oxygen and hydrogen isotope relationships in Archaean gold deposits of the Eastern Goldfields Province, Western Australia: constraints on the source of gold-bearing fluids. In: Ho SE, Groves DI (eds), Recent advances in understanding Precambrian gold deposits. Geology Dept. and University Extension, University of Western Australia, Publ 11:203–213

  • Golding SD, Groves DI, McNaughton NJ, Barley ME, Rock NMS (1987) Carbon isotopic composition of carbonates from contrasting alteration styles in supracrustal rocks of the Norseman-Wiluna Belt, Yilgarn Block, Western Australia: their significance to the source of Archaean auriferous fluids. In: Ho SE, Groves DI (eds), Recent advances in understanding Precambrian gold deposits. Geology Dept. and University Extension, University of Western Australia, Publ 11:215–238

  • Golding SD, McNaughton NJ, Barley ME, Groves DI, Ho SE, Rock NMS, Turner JV (1989) Archean carbon and oxygen reservoirs: their significance for fluid sources and circulation paths for Archean mesothermal gold deposits of the Norseman-Wiluna Belt, Western Australia. Econ Geol Monogr 6:376–388

    Google Scholar 

  • Grant JA (1986) The isocon diagram—a simple solution to Gresen’s equation for metasomatic alteration. Econ Geol 81:1976–1982

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Santosh M (2016) The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geosci Front 7:303–314

    Article  Google Scholar 

  • Gustafson JK, Miller FS (1937) Kalgoorlie geology re-interpreted. Proc Aust Inst Min Metall 106:93–125

    Google Scholar 

  • Hagemann SG, Cassidy KF (2000) Archean orogenic lode gold deposits. Rev Econ Geol 13:9–68

    Google Scholar 

  • Hallberg JA (1972) Geochemistry of Archaean volcanic units in the Eastern Goldfields region of Western Australia. J Petrol 13:45–56

    Article  Google Scholar 

  • Hemley JJ, Cygan GL, Fein JB, Robinson GR, D’Angelo WM (1992) Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations. Econ Geol 87:1–22

    Article  Google Scholar 

  • Ho SE, Bennett JM, Cassidy KF, Hronsky JMA, Mikucki EJ, Sang JH (1990) Fluid inclusion studies. In: Ho SE, Groves DI, Bennett JM (eds) Gold deposits of the Archaean Yilgarn Block, Western Australia: nature, genesis and exploration guides. University of Western Australia, Publ 20:198–211

  • Hoefs J (1997) Stable isotope geochemistry, 4th edn. Springer, Berlin-Heidelberg, 201 pp

    Book  Google Scholar 

  • Holroyd AG (1897) The discovery and occurrence of telluride of gold upon the Kalgoorlie Goldfield, East Coolgardie. Trans Aust Inst Min Eng 4:186–193

    Google Scholar 

  • Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Mineral 14:364–386

    Google Scholar 

  • Krusch P (1901) Die Tellurerze Westaustraliens. Zeitschrift für praktische Geologie 9:211–217

    Google Scholar 

  • Krusch P (1903) Beitrag zur Kenntnis der nutzbaren Lagerstätten Westaustraliens. Zeitschrift für praktische Geologie 11:321-331, 369–389

  • Lanari P, Wagner T, Vidal O (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contrib Mineral Petrol 167:968

    Article  Google Scholar 

  • Larcombe COG (1913) The geology of Kalgoorlie, Western Australia, with special reference to the ore deposits. Australasian Inst Min Eng, Melbourne, Monograph, 315 pp

  • Lister GS, Snoke AW (1984) S-C mylonites. J Struct Geol 6:617–638

    Article  Google Scholar 

  • Lungan A (1986) The structural controls of the Oroya Shoot: implications for the structure of the Kalgoorlie region, Western Australia. B.Sc. Thesis, the University of Western Australia, Perth

  • MacLaren M, Thomson JA (1913) Geology of the Kalgoorlie Goldfield V. Mining and Scientific Press, pp 374–379

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McNaughton NJ, Barley ME, Cassidy KF, Golding SD, Groves DI, Ho SE, Hronsky JMA, Sang JH, Turner JV (1990) Carbon isotope studies. In: Ho SE, Groves DI, Bennett JM (eds) Gold deposits of the Archaean Yilgarn Block, Western Australia: nature, genesis and exploration guides. University of Western Australia, Publ 20:246–251

  • McNaughton NJ, Mueller AG, Groves DI (2005) The age of the giant Golden Mile deposit, Kalgoorlie, Western Australia: ion-microprobe zircon and monazite U-Pb geochronology of a synmineralization lamprophyre dike. Econ Geol 100:1427–1440

    Article  Google Scholar 

  • Mernagh TP, Heinrich CA, Mikucki EJ (2004) Temperature gradients recorded by fluid inclusions and hydrothermal alteration at the Mount Charlotte gold deposit, Kalgoorlie, Australia. Can Mineral 42:1383–1403

    Article  Google Scholar 

  • Mikucki EJ, Groves DI (1990) Mineralogical constraints. In: Ho SE, Groves DI, Bennett JM (eds) Gold deposits of the Archaean Yilgarn Block, Western Australia: nature, genesis and exploration guides. University of Western Australia, Publ 20:212–220

  • Miyano T, Klein C (1989) Phase equilibria in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-CO2 and the stability limit of stilpnomelane in metamorphosed Precambrian iron-formations. Contrib Mineral Petrol 102:478–491

    Article  Google Scholar 

  • Mueller AG (1990) The nature and genesis of high- and medium-temperature Archaean gold deposits in the Yilgarn Block, Western Australia, including a specific study of scheelite-bearing gold skarn deposits. Dissertation, University of Western Australia, Perth

  • Mueller AG (2007) Copper-gold endoskarns and high-Mg monzodiorite-tonalite intrusions at Mt. Shea, Kalgoorlie, Australia: implications for the origin of gold-pyrite-tennantite mineralization in the Golden Mile. Mineral Deposita 42:737–769

    Article  Google Scholar 

  • Mueller AG (2015) Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia: time constraints, down-plunge zonation, and fluid source. Mineral Deposita 50:221–244

    Article  Google Scholar 

  • Mueller AG (2017) Structural setting of Fimiston- and Oroya-style pyrite-telluride-gold lodes, Paringa South mine, Golden Mile, Kalgoorlie: 1. Shear zone systems, porphyry dykes and deposit-scale alteration zones. Mineral Deposita Online. https://doi.org/10.1007/s00126-017-0747-3

  • Mueller AG (2018) Paragonite-chloritoid alteration in the Trafalgar Fault and Fimiston- and Oroya-style gold lodes in the Paringa South mine, Golden Mile, Kalgoorlie: 2. Muscovite-pyrite and silica-chlorite-telluride ore deposited by two superimposed hydrothermal systems. Mineral Deposita Online. https://doi.org/10.1007/s00126-018-0813-5

  • Mueller AG, Muhling JR (2013) Silver-rich telluride mineralization at Mount Charlotte and Au-Ag zonation in the giant Golden Mile deposit, Kalgoorlie, Western Australia. Mineral Deposita 48:295–311

    Article  Google Scholar 

  • Mueller AG, Harris LB, Lungan A (1988) Structural control of greenstone-hosted gold mineralization by transcurrent shearing: a new interpretation of the Kalgoorlie mining district, Western Australia. Ore Geol Rev 3:359–387

    Article  Google Scholar 

  • Mueller AG, Lawrance LM, Muhling J, Pooley GD (2012) Mineralogy and PTX relationships of the Archean Hannan South Au-Cu (Co-Bi) deposit, Kalgoorlie, Western Australia: thermodynamic constraints on the formation of a zoned intrusion-related skarn. Econ Geol 107:1–24

    Article  Google Scholar 

  • Mueller AG, Hagemann SG, McNaughton NJ (2016) Neoarchean orogenic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineralization in the Boulder Lefroy-Golden Mile fault system. Mineral Deposita Online. https://doi.org/10.1007/s00126-016-0665-9

  • Nickel EH (1977) Mineralogy of the “green leader” gold ore at Kalgoorlie, Western Australia. Proc Australas Inst Min Metall 263:9–13

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. In: Valley JM, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:491–559

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567

    Google Scholar 

  • Ossandón GC, Fréraut RC, Gustafson LB, Lindsay DD, Zentilli M (2001) Geology of the Chuquicamata mine: a progress report. Econ Geol 96:249–270

    Article  Google Scholar 

  • Radtke AS (1963) Data on cuprian coloradoite from Kalgoorlie, Western Australia. Econ Geol 58:593–598

    Article  Google Scholar 

  • Ramdohr P (1975) Die Erzmineralien und ihre Verwachsungen. Akademie Verlag, Berlin, 1277 pp

    Google Scholar 

  • Ridley JR, Diamond LW (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev Econ Geol 13:141–162

    Google Scholar 

  • Robert F, Poulsen KH (2001) Vein formation and deformation in greenstone gold deposits. Rev Econ Geol 14:111–155

    Google Scholar 

  • Rock NMS (1984) Nature and origin of calc-alkaline lamprophyres: minettes, vogesites, kersantites and spessartites. Trans R Soc Edinburgh Earth Sci 74(for 1983):193–227

    Article  Google Scholar 

  • Rottier B, Kouzmanov K, Casanova V, Bouvier A-S, Baumgartner LP, Wälle M, Fontbonté L (2018) Mineralized breccia clasts: a window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru). Mineral Deposita 53:919–946

    Article  Google Scholar 

  • Rucklidge J, Stumpfl EF (1968) Changes in the composition of petzite (Au3AgTe2) during analysis by electron microprobe. Neues Jb Mineral Monat:61–68

  • Scantlebury GM (1983) The characterization and origin of the gold lodes in and around the Brownhill Syncline, Golden Mile, Kalgoorlie, Western Australia. B.Sc. (Honours) Thesis, University of Western Australia, Perth, 90 pp

  • Shackleton JM, Spry PG (2003) Antimony-rich montbrayite ((Au,Sb)2Te3) from the Golden Mile, Western Australia, and its compositional implications. Neues Jb Mineral Monat:113–125

  • Shackleton JM, Spry PG, Bateman R (2003) Telluride mineralogy of the Golden Mile deposit, Kalgoorlie, Western Australia. Can Mineral 41:1503–1524

    Article  Google Scholar 

  • Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: Pressure considerations and applications to natural assemblages. Can Mineral 23:517–534

  • Sheppard SMF (1986) Charaterization and isotopic variations in natural waters. In: Valley JM, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:165–183

  • Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc Lond 133:191–213

    Article  Google Scholar 

  • Simpson ES (1912) Detailed mineralogy of Kalgoorlie and Boulder with special reference to the ore deposits. In: Simpson ES, Gibson CG (eds) The geology and ore deposits of Kalgoorlie, East Coolgardie Goldfield, part 1. Geol Survey Western Australia, Bull 42:77–151

  • Spencer LJ (1903) Mineralogical notes on Western Australian tellurides: the non-existence of “Kalgoorlite” and “Coolgardite” as mineral species. Mineral Mag 13:268–290

    Google Scholar 

  • Spry PG, Gedlinske BL (1987) Tables for the determination of common opaque minerals. Economic Geology Publishing Company

  • Stillwell FL (1929) Geology and ore deposits of the Boulder Belt, Kalgoorlie. Bull Geol Surv W Aust 94:1–110

    Google Scholar 

  • Stillwell FL (1931) The occurrence of telluride minerals at Kalgoorlie. Proc Australas Inst Min Metall 84:115–190

    Google Scholar 

  • Streckeisen A (1979) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendations and suggestions of the IUGS subcommission on the systematics of igneous rocks. Geology 7:331–335

    Article  Google Scholar 

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67:70–78

    Article  Google Scholar 

  • Swager CP, Goleby BR, Drummond BJ, Rattenbury MS, Williams PR (1997) Crustal structure of granite-greenstone terranes in the Eastern Goldfields, Yilgarn Craton, as revealed by seismic reflection profiling. Precambrian Res 83:43–56

    Article  Google Scholar 

  • Thomson JA (1913) On the petrology of the Kalgoorlie Goldfield, Western Australia. Q J Geol Soc Lond 69:621–677

    Article  Google Scholar 

  • Tomich SA (1959) The Oroya Shoot and its relationship to other flatly plunging ore pipes at Kalgoorlie. Proc Australas Inst Min Metall 190:113–124

    Google Scholar 

  • Travis GA, Woodall R, Bartram GD (1971) The geology of the Kalgoorlie Goldfield. In: Glover JE (ed) Symposium on Archaean rocks. Geol Soc Australia, Publ 3:175–190

  • Tripp G I (2013) Stratigraphy and structure in the Neoarchaean of the Kalgoorlie district, Australia: critical controls on greenstone-hosted gold deposits. Dissertation, James Cook University, Townsville

  • Tröger WE (1971) Optische Bestimmung der gesteinsbildenden Minerale. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 188 pp

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Yavuz F, Yavuz V, Sasmaz A (2006) WinClastour—a Visual Basic program for tourmaline formula calculation and classification. Comput Geosci 32:1156–1168

    Article  Google Scholar 

  • Zhao J, Brugger J, Ngothai Y, Pring A (2014) The replacement of chalcopyrite by bornite under hydrothermal conditions. Am Mineral 99:2389–2397

    Article  Google Scholar 

  • Zheng Y-F (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Article  Google Scholar 

Download references

Acknowledgments

The senior author acknowledges the assistance of Ray Chang with XRD and XRF analyses and of Neal McNaughton and Marion Dahl/Marshall with the stable isotope analyses during his Ph.D. study at the University of Western Australia. Discussions with Adrian Lungan and his permission to publish his photograph of Green Leader ore are appreciated. Janet Muhling acknowledges support from the Centre for Microscopy, Characterization and Analysis (CMCA) at the University of Western Australia. Greg Hall and Patrick Verbeek, former Gold Resources Pty Ltd., encouraged mapping in the Paringa South underground mine before closure in 1987. Constructive reviews by David Cooke and Gawen Jenkins helped to improve data presentation and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas G. Mueller.

Additional information

Editorial handling: S. Hagemann

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 6808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, A.G., Muhling, J.R. Early pyrite and late telluride mineralization in vanadium-rich gold ore from the Oroya Shoot, Paringa South mine, Golden Mile, Kalgoorlie: 3. Ore mineralogy, Pb-Te (Au-Ag) melt inclusions, and stable isotope constraints on fluid sources. Miner Deposita 55, 733–766 (2020). https://doi.org/10.1007/s00126-019-00876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-019-00876-6

Keywords

Navigation