Skip to main content
Log in

Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of “hybrid hydrous Mg silicate – clay silicate” type Ni-laterite

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of “hybrid hydrous Mg silicate – clay silicate” type Ni-laterite deposit for Loma Ortega would be more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aiglsperger T, Proenza JA, Zaccarini F, Lewis JF, Garuti G, Labrador M, Longo F (2015) Platinum group minerals (PGM) in the Falcondo Ni-laterite deposit, Loma Caribe peridotite (Dominican Republic). Mineral Deposita 50:105–123

    Article  Google Scholar 

  • Aiglsperger T, Proenza JA, Font-Bardia M, Baurier-Aymat S, Galí S, Lewis JF, Longo F (2016a) Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explain nugget formation in Ni-laterites. Mineral Deposita. doi:10.1007/s00126-016-0692-6

  • Aiglsperger T, Proenza JA, Lewis JF, Labrador M, Svojtka M, Rojas-Purón A, Longo F, Ďurišová J (2016b) Critical metals (REE, Sc, PGE) in Ni-laterites from Cuba and the Dominican Republic. Ore Geol Rev 73:127–147

    Article  Google Scholar 

  • Barros de Oliveira SM, Trescases JJ, Melfi AJ (1992) Lateritic nickel deposits of Brazil. Mineral Deposita 27:137–146

    Article  Google Scholar 

  • Berger VI, Singer DA, Bliss JD, Moring BC (2011) Ni-Co laterite deposits of the world; database and grade and tonnage models: US Geol Surv Open File Rep 2011–1058. http://pubs.usgs.gov/of/2011/1058/

  • Bosio NJ, Hurst VJ, Smith RL (1975) Nickeliferous nontronite, a 15 Å garnierite, at Niquelândia, Goiás, Brazil. Clay Clay Miner 23:400–403

    Article  Google Scholar 

  • Brand NW, Butt CRM, Elias M (1998) Nickel laterites: classification and features. AGSO J Australian Geol Geoph 17:81–88

    Google Scholar 

  • Brindley GW, de Souza JV (1975) Nickel containing montmorillonites and chlorites from Brazil, with remarks on schuchardtite. Mineral Mag 40:141–152

    Google Scholar 

  • Brindley GW, Hang PT (1973) The nature of garnierite: I. Structure, chemical compositions and color characteristics. Clay Clay Miner 21:27–40

    Article  Google Scholar 

  • Brindley GW, Bish D, Wan HM (1977) The nature of kerolite, its relation to talc and stevensite. Mineral Mag 41:443–452

    Article  Google Scholar 

  • Brindley GW, Bish DL, Wan HM (1979) Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. Am Mineral 64:615–625

    Google Scholar 

  • Bruker (2007) Bruker AXS Inc. Madison, Wisconsin

    Google Scholar 

  • Butt CRM, Cluzel D (2013) Nickel laterite ore deposits: weathered serpentinites. Elements 9:123–128

    Article  Google Scholar 

  • Camuti KS, Gifford MG (1997) Mineralogy of the Murrin Murrin nickel laterite deposit, Western Australia. In: Papunen H (ed) Mineral deposits: research and exploration—where do they meet? Abstracts of the 4th meeting of the SGA, 407–410

  • Cathelineau M, Quesnel B, Gautier P, Boulvais P, Couteau C, Drouillet M (2016) Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Mineral Deposita 51:271–282

    Article  Google Scholar 

  • Chan TK, Finch IJ (2001) Determination of platinum-group elements and gold by inductively coupled plasma mass spectrometry. Australian Platinum Conference, Perth, pp 1–9

    Google Scholar 

  • Colin F, Noack Y, Trescases JJ, Nahon D (1985) L’alteration latéritique débutante des pyroxenites de Jacuba, Niquelândia, Brésil. Clay Miner 20:93–113

    Article  Google Scholar 

  • Colin F, Nahon D, Trescases JJ, Melfi AJ (1990) Lateritic weathering of pyroxenites at Niquelandia, Goias, Brazil: the supergene behaviour of nickel. Econ Geol 85:1010–1023

    Article  Google Scholar 

  • Dalvi AD, Gordon Bacon W, Osborne RC (2004) The past and the future of nickel laterites. PDAC Int. Convention, Toronto, p 27

    Google Scholar 

  • Decarreau A, Colin F, Herbillon A, Manceau A, Nahon D, Paquet H, Trauth-Badaud D, Trescases JJ (1987) Domain segregation in Ni-Fe-Mg-smectites. Clay Clay Miner 35:1–10

    Article  Google Scholar 

  • Dong HL, Kostka JE, Kim J (2003) Microscopic evidence for microbial dissolution of smectite. Clay Clay Miner 51:502–512

    Article  Google Scholar 

  • Draper G, Gutiérrez G, Lewis JF (1996) Thrust emplacement of the Hispaniola peridotite belt: orogenic expression of the mid-Cretaceous Caribbean arc polarity reversal? Geology 24:1143–1146

    Article  Google Scholar 

  • Eggleton RA (1975) Nontronite topotaxial after hedenbergite. Am Mineral 6:1063–1068

    Google Scholar 

  • Elias M (2002) Nickel laterite deposits—geological overview, resources and exploration. In: Cooke D, Pongratz J (eds) Giant ore deposits—characteristics, genesis, and exploration. CODES special publication 4. University of Tasmania, Hobart, pp 205–220

    Google Scholar 

  • Elias M, Donaldson MJ, Giorgetta N (1981) Geology, mineralogy, and chemistry of lateritic nickel-cobalt deposits near Kalgoorlie, Western Australia. Econ Geol 76:1775–1783

    Article  Google Scholar 

  • Escuder-Viruete J, Joubert M, Urien P, Friedman R, Weis D, Ullrich T, Pérez-Estaún A (2008) Caribbean island-arc rifting and back-arc basin development in the Late Cretaceous: geochemical, isotopic and geochronological evidence from Central Hispaniola. Lithos 104:378–404

    Article  Google Scholar 

  • Escuder-Viruete J, Pérez-Estaún A, Weis D, Friedman R (2010) Geochemical characteristics of the Río Verde Complex, Central Hispaniola: implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc. Lithos 114:168–185

    Article  Google Scholar 

  • Freyssinet P, Butt CRM, Morris RC (2005) Ore-forming processes related to lateritic weathering. Econ Geol 100th Anniv:681–722

    Google Scholar 

  • Gallardo T, Tauler E, García-Romero E, Proenza JA, Suárez-Barrios M, Chang A (2011) Caracterización Mineralógica de las Esmectitas Niquelíferas del yacimiento de San Felipe (Camagüey, Cuba). Macla 15:89–90

    Google Scholar 

  • Gaudin A, Grauby O, Noack Y, Decarreau A, Petit S (2004) Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). I XRD and multi-scale chemical approaches. Clay Miner 39:301–315

    Article  Google Scholar 

  • Gaudin A, Decarreau A, Noack Y, Grauby O (2005) Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian J Earth Sci 52:231–241

    Article  Google Scholar 

  • Gleeson SA, Butt CR, Elias M (2003) Nickel laterites: a review. SEG Newsletter 54:11–18

    Google Scholar 

  • Gleeson SA, Herrington RJ, Durango J, Velásquez CA, Koll G (2004) The mineralogy and geochemistry of the Cerro Matoso S.A. Ni-laterite deposit, Montelíbano, Colombia. Econ Geol 99:1197–1213

    Article  Google Scholar 

  • Golightly JP (1981) Nickeliferous laterite deposits. Econ Geol 75th Anniv:710–735

    Google Scholar 

  • Golightly JP (2010) Progress in understanding the evolution of nickel laterites. Econ Geol Spec Pub 15:451–485

    Google Scholar 

  • Golightly JP, Arancibia ON (1979) The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine form a nickeliferous laterite profile, Soroako, Indonesia. Can Mineral 17:719–728

    Google Scholar 

  • Haldemann E, Buchan R, Blowes J, Chandler T (1979) Geology of lateritic nickel deposits, Dominican Republic. International Laterite Symposium 4:57–84

    Google Scholar 

  • Hotz P (1964) Nickeliferous laterites in southwestern Oregon and northwestern California. Econ Geol 59:355–396

    Article  Google Scholar 

  • Kesler SE, Campbell IH, Allen CM (2005) Age of the Los ranchos formation, Dominican Republic: timing and tectonic setting of primitive island arc volcanismin in the Caribbean region. Geol Soc Am Bull 117:987–995

    Article  Google Scholar 

  • Kuck PH (2013) Nickel. USGS mineral commodity summaries 108–109

  • Lewis JF, Draper G (1990) Geological and tectonic evolution of the northern Caribbean margin. In: Dengo G, Case JE (eds) The Geology of North America, The Caribbean region, vol H. Geological Society of America, Colorado, pp 77–140

    Google Scholar 

  • Lewis JF, Astacio VA, Espaillat J, Jiménez J (2000) The occurrence of volcanogenic massive sulfide deposits in the Maimón Formation, Dominican Republic: the Cerro de Maimón, Loma Pesada and Loma Barbuito deposits. In: Sherlock R, Barsch R, Logan A (eds) VMS deposits of Latin America, Geol. Soc. can. Spec. Publ, vol 2, pp 213–239

    Google Scholar 

  • Lewis JF, Draper G, Proenza JA, Espaillat J, Jimenez J (2006) Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: a review of their occurrence, composition origin, emplacement and Ni-laterite soils formation. Geol Acta 4:237–263

    Google Scholar 

  • Lithgow E (1993) Nickel laterites of central Dominican Republic part I. Mineralogy and ore dressing. In: Reddy RG, Weizenbach RN (eds) The Paul E. Queneau Int. Symposium, extractive metallurgy of copper, nickel and cobalt, volume I: fundamental aspects. The Minerals, Metals and Materials Society, Portland, pp 403–442

    Google Scholar 

  • Marchesi C, Garrido CJ, Proenza JA, Hidas K, Butjosa L, Lewis JF (2016) Geochemical record of subduction initiation in the sub-arc mantle: insights from the Loma Caribe peridotite (Dominican Republic). Lithos 252–253:1–15

    Article  Google Scholar 

  • Moore D, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 379

    Google Scholar 

  • Nahon DB, Colin F (1982) Chemical weathering of orthopyroxenes under lateritic conditions. Am J Sci 282:1232–1243

    Article  Google Scholar 

  • Nahon DB, Colin F, Tardy Y (1982a) Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clay Miner 17:339–348

    Article  Google Scholar 

  • Nahon DB, Paquet H, Delvigne J (1982b) Lateritic weathering of ultramafic rocks and the concentration of nickel in the Western Ivory Coast. Econ Geol 77:1159–1175

    Article  Google Scholar 

  • Naldrett AJ, Duke JM (1980) Platinum metals in magmatic sulfide ores. Science 208:1417–1424

    Article  Google Scholar 

  • Nelson CE, Proenza JA, Lewis JF, López-Kramer J (2011) The metallogenic evolution of the Greater Antilles. Geol Acta 9:229–264

    Google Scholar 

  • Nelson CE, Ituralde-Vinent M, Proenza J, Draper G, Escuder-Viruete J, Garcia-Casco A (2015) Tectonostratigraphic map of the Greater Antilles (1:1,000,000 scale): Recursos del Caribe, S.A

  • Noack Y, Colin F, Nahon D, Delvigne J, Michaux L (1993) Secondary-mineral formation during natural weathering of pyroxene: review and thermodynamic approach. Am J Sci 293:111–134

    Article  Google Scholar 

  • Pelletier B (1996) Serpentines in nickel silicate ore from New Caledonia. Australasian Institute of Mining and Metallurgy publication series—nickel conference “mineral to market”, Kalgoorlie. Western Australia 6(96):197–205

    Google Scholar 

  • Proenza JA, Zaccarini F, Lewis JF, Longo F, Garuti G (2007) Chromian spinel composition and the platinum-group minerals of the PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. Can Mineral 45:631–648

    Article  Google Scholar 

  • Redwood S (2014) Gold surge mining is booming in the Dominican Republic as investors follow the gold rush. Min J 24:23–27

    Google Scholar 

  • Suárez S, Nieto F, Velasco F, Martín FJ (2011) Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. Eur J Miner 23:179–196

    Article  Google Scholar 

  • Tauler E, Proenza J, Galí S, Lewis J, Labrador M, García-Romero E (2009) Ni-sepiolite-falcondoite in garnierite mineralisation from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Miner 44:435–454

    Article  Google Scholar 

  • Torró L, García-Casco A, Proenza JA, Blanco-Quintero I, Gutiérrez-Alonso G, Lewis JF (2016) High-pressure greenschist to blueschist facies transition in the Maimón Formation (Dominican Republic) suggests mid-Cretaceous subduction of the Early Cretaceous Caribbean arc. Lithos 266-267:309–331

    Article  Google Scholar 

  • Torró L, Proenza JA, Marchesi C, García-Casco A, Lewis JF (2017) Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): geochemical record of the nascent Greater Antilles paleo-arc. Lithos 278-281:255–273

    Article  Google Scholar 

  • Trescases JJ (1975) L’évolution géochimique supergène des roches ultrabasiques en zone tropicale et la formation des gisements nickélifères de Nouvelle-Calédonie. Mémoires ORSTOM 78:288

    Google Scholar 

  • Vieira Coelho AC, Poncelet G, Ladrière J (2000) Nickel, iron-containing clay minerals from Niquelândia deposit, Brazil 1. Characterization. Appl Clay Sci 17:163–181

    Article  Google Scholar 

  • Villanova-de-Benavent C, Proenza JA, Galí S, García-Casco A, Tauler E, Lewis JF, Longo F (2014) Garnierites and garnierites: textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol Rev 58:91–109

    Article  Google Scholar 

  • Villanova-de-Benavent C, Nieto F, Viti C, Proenza JA, Galí S, Roqué-Rosell J (2016a) Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): mineralogy, nanotextures and formation mechanisms by HRTEM and AEM. Am Mineral. doi:10.2138/am-2015-5518

  • Villanova-de-Benavent C, Domènech C, Tauler E, Galí S, Tassara S, Proenza JA (2016b) Fe-Ni-bearing Serpentines from the Saprolite Horizon of Caribbean Ni-Laterite Deposits: New insights from thermodynamic calculations. Mineral Deposita. doi:10.1007/s00126-016-0683-7

  • Wells MA, Ramanaidou ER, Verrall M, Tessarolo C (2009) Mineralogy and crystal chemistry of “garnierites” in the Goro lateritic nickel deposit, New Caledonia. Eur J Miner 21:467–483

    Article  Google Scholar 

  • Zeissink HE (1969) The mineralogy and chemistry of a Nickeliferous laterite profile (Greenvale, Queensland, Australia). Mineral Deposita 4:132–152

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by FEDER Funds, the Spanish projects CGL2009-10924 and CGL2012-36263. The authors are grateful to the Falcondo Glencore Xstrata Nickel mine staff for their hospitality and generosity during field work and sampling. The careful and detailed revision of this manuscript made by S. Gleeson and A. González-Álvarez are acknowledged, as well as the guidance and recommendations by Editor Georges Beaudoin and Associate Editor Beate Orberger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Villanova-de-Benavent.

Additional information

Editorial handling: B. Orberger

Electronic supplementary material

ESM Table 1

Concentrations of relevant major elements (in wt.%) as well as Ni (in %) in samples from drill core O954–0307. UMIA (ultramafic index of alteration) after Aiglsperger et al. (2016b). Data from 35.9 to 41.3 m is not presented to avoid redundancy. (XLSX 19 kb)

ESM Table 2

Concentrations of PGE (in ppb) in samples from drill core O954–0307. Data from 35.9 to 41.3 m is not presented to avoid redundancy. (XLSX 10 kb)

ESM Table 3

Representative EPMA analyses (in weight percent) and calculated structural formulae (in atoms per formula unit) of olivine, enstatite, diopside and Cr-spinel (<d.l. = lower than detection limit). (XLSX 14 kb)

ESM Table 4

Representative EPMA analyses (in weight percent) and calculated structural formulae (in atoms per formula unit) of serpentine I and serpentine II (na = not analysed, <d.l. = lower than detection limit). (XLSX 12 kb)

ESM Table 5

Representative EPMA analyses (in weight percent) and calculated structural formulae (in atoms per formula unit) of garnierites (<d.l. = lower than detection limit). (XLSX 10 kb)

ESM Table 6

Representative EPMA analyses (in weight percent) and calculated structural formulae (in atoms per formula unit) of Ni-smectites (na = not analysed, <d.l. = lower than detection limit). (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauler, E., Lewis, J.F., Villanova-de-Benavent, C. et al. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of “hybrid hydrous Mg silicate – clay silicate” type Ni-laterite. Miner Deposita 52, 1011–1030 (2017). https://doi.org/10.1007/s00126-017-0750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0750-8

Keywords

Navigation