Skip to main content

Advertisement

Log in

The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Hashitu porphyry molybdenum deposit is located in the Great Hinggan Range Cu-Mo-Pb-Zn-Ag polymetallic metallogenic province of NE China, in which the Mo-bearing quartz veins are hosted in approximately coeval granites and porphyries. The deposit contains more than 100 Mt of ore with an average grade of 0.13 wt.% Mo. This well-preserved magmatic-hydrothermal system provides an excellent opportunity to determine the source of the molybdenum, the evolution of the hydrothermal fluids and the controls on molybdenite precipitation in a potentially important but poorly understood metallogenic province. Studies of fluid inclusions hosted in quartz veins demonstrate that the Hashitu hydrothermal system evolved to progressively lower pressure and temperature. Mineralogical and fluid inclusion analyses and physicochemical calculations suggest that molybdenite deposition occurred at a temperature of 285 to 325 °C, a pressure from 80 to 230 bars, a pH from 3.5 to 5.6, and a ∆log fO2 (HM) of −3.0, respectively. Results of multiple isotope (O, H, S, Mo, and Pb) analyses are consistent in indicating a genetic relationship between the ore-forming fluids, metals, and the Mesozoic granitic magmatism (i.e., δ 18OH2O from +1.9 to +9.7‰, δDH2O from −106 to −87‰, δ 34SH2S from +0.3 to +3.9‰, δ 98/95Mo from 0 to +0.37‰, 206Pb/204Pb from 18.2579 to 18.8958, 207Pb/204Pb from 15.5384 to 15.5783, and 208Pb/204Pb from 38.0984 to 42.9744). Molybdenite deposition is interpreted to have occurred from a low-density magmatic-hydrothermal fluid in response to decreases in temperature, pressure, and fO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anbar AD, Knab KA, Barling J (2001) Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. Anal Chem 73:1425–1431

    Article  Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90

    Article  Google Scholar 

  • Audétat A (2015) Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado. J Petrol 56:1519–1546

    Article  Google Scholar 

  • Bodnar RJ, Burnham CW, Sterner SM (1985) Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 °C and 1500 bars. Geochim Cosmochim Acta 49:1861–1873

    Article  Google Scholar 

  • Brown PE, Lamb WE (1989) P-V-T properties of fluids in the system NaCl ± H2O ± CO2: new graphical presentations and implications for fluid inclusions studies. Geochim Cosmochim Acta 53:1209–1221

    Article  Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 71–136

  • Cai JH, Yan GH, Xiao CD, Wang GY, Mu BL, Zhang RH (2004) Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in the Taihang-Da Hinggan Mountains tectonomagmatic belt and their source region. Acta Petrol Sin 20:1225–1242 (in Chinese with English abstract)

    Google Scholar 

  • Chen B, Jahn BM (2001) Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai Orogen of NW China and their tectonic implications. Geol Mag 139:1–13

    Google Scholar 

  • Clayton RN, O'Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067

    Article  Google Scholar 

  • Cline JS, Bodnar RJ (1994) Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Econ Geol 89:1780–1802

    Article  Google Scholar 

  • Ding C, Dai P, Bagas L, Nie F, Jiang S, Wei J, Ding C, Zuo P, Zhang K (2016) Geochemistry and Sr-Nd-Pb isotopes of the granites from the Hashitu Mo deposit of Inner Mongolia, China: constraints on their origin and tectonic setting. Acta Geol Sin 90(1):106–120

  • Driesner T, Heinrich CA (2007) The system H2O-NaCl. Part I: correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 500 0bar, and 0 to 1 X NaCl. Geochim Cosmochim Acta 71:4880–4901

    Article  Google Scholar 

  • Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103

    Article  Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Miner Petrol 156:197–215

    Article  Google Scholar 

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    Article  Google Scholar 

  • Greber ND, Pettke T, Nägler TF (2014) Magmatic-hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos 190:104–110

    Article  Google Scholar 

  • Guo F, Fan WM, Gao XF, Li CW, Miao LC, Zhao L, Li HX (2010) Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: constraints on tectonic framework and Phanerozoic crustal growth. Lithos 120:563–578

    Article  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Heinrich CA, Günther D, Audétat A, Ulrich T, Frischknecht R (1999) Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27(8):755–758

    Article  Google Scholar 

  • Henley RW, McNabb A (1978) Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ Geol 73:1–20

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer-Verlag, Berlin

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Hurtig NC, Williams-Jones AE (2014a) An experimental study of the transport of gold through hydration of AuCl in aqueous vapour and vapour-like fluids. Geochim Cosmochim Acta 127:305–325

    Article  Google Scholar 

  • Hurtig NC, Williams-Jones AE (2014b) An experimental study of the solubility of MoO3 in aqueous vapour and low to intermediate density supercritical fluids. Geochim Cosmochim Acta 136:169–193

    Article  Google Scholar 

  • Hurtig NC, Williams-Jones AE (2015) Porphyry-epithermal Au-Ag-Mo ore formation by vapor-like fluids: new insights from geochemical modeling. Geology 43:587–590

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0° to 1000°C. Comput Geosci 18:899–947

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA (2008) Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineral Deposita 43:533–552

    Article  Google Scholar 

  • Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol 105:91–118

    Article  Google Scholar 

  • Lecumberri-Sanchez P, Steele-MacInnis M, Bodnar RJ (2012) A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochim Cosmochim Acta 92:14–22

    Article  Google Scholar 

  • Lefticariu L, Pratt LM, Ripley EM (2006) Mineralogic and sulfur isotope effects accompanying the oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4° to 150°C. Geochim Cosmochim Acta 70:4889–4905

    Article  Google Scholar 

  • Li JY (2006) Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J Asian Earth Sci 26(3):207–224

    Article  Google Scholar 

  • Li N, Chen YJ, Ulrich T, Lai Y (2012a) Fluid inclusion study of the Wunugetu Cu-Mo deposit, Inner Mongolia, China. Mineral Deposita 47:467–482

    Article  Google Scholar 

  • Li W, Zhong R, Xu C, Song B, Qu W (2012b) U-Pb and Re-Os geochronology of the Bainaimiao Cu–Mo–Au deposit, on the northern margin of the North China Craton, Central Asia Orogenic Belt: implications for ore genesis geodynamic setting. Ore Geol Rev 48:139–150

    Article  Google Scholar 

  • Liu J, Zhang R, Zhang Q (2004) The regional metallogeny of Da Hinggan Ling, China. Earth Sci Frontiers 11:269–277 (in Chinese with English abstract)

    Google Scholar 

  • Lu HF, Wang HP, Cheng PQ, Bao HW, Pan YQ, Lei GX (2009) Exploration report of the Hashitu polymetallic deposit in Inner Mongolia. The Geological Exploration Institute of Liaoning Province, pp 88 (in Chinese)

  • Ludington S, Plumlee GS (2009) Climax-type porphyry molybdenum deposits. U.S. Geological Survey open file report 2009-1215, pp 16

  • Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ, Li YF (2005) Mesozoic large-scale metallogenic pluses in North China corresponding geodynamic settings. Acta Petrol Sin 21:169–188 (in Chinese with English abstract)

    Google Scholar 

  • Mavrogenes JA, Bodnar RJ (1994) Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications. Geochim Cosmochim Acta 58:141–148

    Article  Google Scholar 

  • Meng QR (2003) What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics 369:155–174

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2013) A predictive model for metal transport of silver chloride by aqueous vapor in ore-forming magmatic-hydrothermal systems. Geochim Cosmochim Acta 104:123–135

    Article  Google Scholar 

  • Migdisov AA, Bychkov AY, Williams-Jones AE, Van Hinsberg VJ (2014) A predictive model for the transport of copper by HCl-bearing water vapour in ore-forming magmatic-hydrothermal systems: implications for copper porphyry ore formation. Geochim Cosmochim Acta 129:33–53

    Article  Google Scholar 

  • Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551–578

    Article  Google Scholar 

  • Ohmoto H, Lasaga AC (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of the hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 509–567

    Google Scholar 

  • Pietruszka AJ, Walker RJ, Candela PA (2006) Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS: an evaluation of matrix effects. Chem Geol 225:121–136

    Article  Google Scholar 

  • Qi JP, Chen YJ, Pirajno F (2005) Geological characteristics and tectonic setting of the epithermal deposits in the northeast China. J Miner Petrol 25:47–59 (in Chinese with English abstract)

    Google Scholar 

  • Ramboz C, Pichavant M, Weisbrod A (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chem Geol 37:29–48

    Article  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol 98:1515–1533

    Article  Google Scholar 

  • Safonova IY (2009) Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geol Rev 35:137–154

    Article  Google Scholar 

  • Seedorff E, Einaudi MT (2004) Henderson porphyry molybdenum system, Colorado: I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Econ Geol 99:3–37

    Google Scholar 

  • Seward TM, Williams-Jones AE, Migdisov AA (2014) The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. Treatise on Geochem 13:29–57

    Article  Google Scholar 

  • Shao JA, Mu BL, Zhu HZ, Zhang LQ (2010) Material source and tectonic settings of the Mesozoic mineralization of the Great Hinggan Range. Acta Petrol Sin 26:649–656 (in Chinese with English abstract)

    Google Scholar 

  • Shu Q, Chang Z, Lai Y, Zhou Y, Sun Y, Yan C (2016) Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re-Os dates of porphyry Mo deposits in the northern Xilamulun District. Econ Geol 111:1783–1798

    Article  Google Scholar 

  • Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HOKIEFLINCS_H2O-NACL: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Comput Geosci 49:334–337

    Article  Google Scholar 

  • Stein HJ (1988) Genetic traits of Climax-type granites and molybdenum mineralization, Colorado Mineral Belt. In: Taylor RP, Strong DF (eds) Recent advances in the geology of granite-related mineral deposits. Canadian Institute of Mining and Metallurgy, Special Volume 39, pp 394–401

  • Stein HJ, Hannah JL (1985) Movement and origin of ore fluids in Climax-type systems. Geology 13(7):469–474

  • Sun MD, Xu YG, Wilde SA, Chen HL, Yang SF (2015) The Permian Dongfanghong island-arc gabbro of the Wandashan orogen, NE China: implications for Paleo-Pacific subduction. Tectonophysics 659:122–136

    Article  Google Scholar 

  • Tossell JA (2005) Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochim Cosmochim Acta 69:2981–2993

    Article  Google Scholar 

  • Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY, Zhu RX (2006) Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth Planet Sci Lett 251:179–198

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151:413–433

    Article  Google Scholar 

  • Wei CS, Zhao ZF, Spicuzza MJ (2008) Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China. Chem Geol 250:1–15

    Article  Google Scholar 

  • White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith RP, Ranta DE, Steininger RC (1981) Character and origin of Climax-type molybdenum deposits. Econ Geol 75th Anniversary Volume:270–316

    Google Scholar 

  • Wilde SA (2015) Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—a review of the evidence. Tectonophysics 662:345–362

    Article  Google Scholar 

  • Wilde SA, Zhou JB (2015) The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. J Asian Earth Sci 113:909–921

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) 100th anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Williams-Jones AE, Migdisov AA (2014) Experimental constraints on the transport and deposition of metals in ore-forming hydrothermal systems. Econ Geol Special Publication 18:77–95

    Google Scholar 

  • Wu FY, Sun DY, Li H, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173

    Article  Google Scholar 

  • Wu FY, Sun DY, Jahn BM, Wilde S (2004) A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. J Asian Earth Sci 23:731–744

    Article  Google Scholar 

  • Wu FY, Yang JH, Wilde SA, Zhang XO (2005a) Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol 221:127–156

    Article  Google Scholar 

  • Wu FY, Lin JQ, Wilde SA, Zhang XO, Yang JH (2005b) Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233:103–119

    Article  Google Scholar 

  • Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011a) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41:1–30

    Article  Google Scholar 

  • Wu H, Zhang L, Wan B, Chen Z, Xiang P, Pirajno F, Du A, Qu W (2011b) Re-Os and 40Ar/39Ar ages of the Jiguanshan porphyry Mo deposit, Xilamulun metallogenic belt, NE China, and constraints on mineralization events. Mineral Deposita 46:171–185

    Article  Google Scholar 

  • Wu H, Zhang L, Wan B, Chen Z, Zhang X, Xiang P (2011c) Geochronological geochemical constraints on Aolunhua porphyry Mo-Cu deposit, northeast China, its tectonic significance. Ore Geol Rev 43:78–91

    Article  Google Scholar 

  • Xiao WJ, Zhang LC, Qin KZ, Sun S, Li JL (2004) Paleozoic accretionary and collisional tectonics of the eastern Tianshan China: implication for the continental growth of central Asia. Am J Sci 304:370–395

    Article  Google Scholar 

  • Zartman RE, Doe BR (1981) Plumbotectonics—the model. Tectonophysics 75:135–162

    Article  Google Scholar 

  • Zeng QD, Liu JM, Zhang ZL, Chen WJ, Zhang WQ (2011) Geology geochronology of the Xilamulun molybdenum metallogenic belt in eastern Inner Mongolia, China. Int J Earth Sci 100:1791–1809

    Article  Google Scholar 

  • Zhai D, Liu J (2014) Gold-telluride-sulfide association in the Sandaowanzi epithermal Au-Ag-Te deposit, NE China: implications for phase equilibrium and physicochemical conditions. Miner Petrol 108:853–871

    Article  Google Scholar 

  • Zhai DG, Liu JJ, Wang JP, Yang YQ, Liu XW, Wang GW, Liu ZJ, Wang XL, Zhang QB (2012) Characteristics of melt-fluid inclusions and sulfur isotopic compositions of the Hashitu molybdenum deposit, Inner Mongolia. Earth Sci 37(6):1279–1290 (in Chinese with English abstract)

    Google Scholar 

  • Zhai DG, Liu JJ, Wang JP, Yao MJ, Wu SH, Fu C, Liu ZJ, Wang SG, Li YX (2013) Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence. Int Geol Rev 55:204–224

    Article  Google Scholar 

  • Zhai D, Liu J, Wang J, Yang Y, Zhang H, Wang X, Zhang Q, Wang G, Liu Z (2014a) Zircon U-Pb and molybdenite Re-Os geochronology, and whole-rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China. J Asian Earth Sci 79:144–160

    Article  Google Scholar 

  • Zhai D, Liu J, Zhang H, Yao M, Wang J, Yang Y (2014b) S-Pb isotopic geochemistry, U-Pb and Re-Os geochronology of the Huanggangliang Fe-Sn deposit, Inner Mongolia, NE China. Ore Geol Rev 59:109–122

    Article  Google Scholar 

  • Zhai D, Liu J, Zhang H, Wang J, Su L, Yang X, Wu S (2014c) Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: in situ LA-ICP-MS evidence. Lithos 190:279–291

    Article  Google Scholar 

  • Zhai D, Liu J, Ripley EM, Wang J (2015) Geochronological and He-Ar-S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China. Lithos 212:338–352

    Article  Google Scholar 

  • Zhang LG, Liu JX, Wang KF (1995) Block Geology of eastern Asia lithosphere: isotope geochemistry and dynamics of upper mantle, basement and granite. Science Press, Beijing, p 252 (in Chinese with English abstract)

    Google Scholar 

  • Zhang K, Nie FJ, Hou WR, Li C, Liu Y (2012) Re-Os isotopic age dating of molybdenite separates from Hashitu Mo deposit in Linxi County of Inner Mongolia and its geological significance. Miner Depos 31(1):129–138 (in Chinese with English abstract)

Download references

Acknowledgements

We thank Mineralium Deposita referees, Thomas Ulrich and Huaying Liang, Associate Editor Shao-Yong Jiang, and Editor-in-Chief Georges Beaudoin for their constructive reviews and comments, which significantly improved this paper. Ed Ripley and Ben Underwood helped with the sulfur isotope analyses, Li Su and Hongyu Zhang with the zircon and sulfide trace element analyses, and Noémie Breillat with the molybdenum isotope analyses. Xingwang Liu and Gongwen Wang helped with the field work and Wenbing Zhu with the preparation of samples for H-O isotope analyses. Discussions with and helpful suggestions from Chusi Li and Sotirios Kokkalas helped us to clarify some of the ideas presented in the manuscript. This research was supported financially by the National Natural Science Foundation of China (Grants 41503042, 41272110), the Fundamental Research Funds for the Central Universities (Grant 2652015045), the Open Research Funds for GPMR (Grant GPMR201513), and the Chinese “111” project (Grant B07011). An initial draft of the manuscript was prepared during the visit of DZ to Indiana University in 2013–2014, which was funded by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Degao Zhai.

Additional information

Editorial handling: S.-Y. Jiang

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, D., Liu, J., Tombros, S. et al. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies. Miner Deposita 53, 377–397 (2018). https://doi.org/10.1007/s00126-017-0745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0745-5

Keywords

Navigation