Skip to main content

Advertisement

Log in

Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron, and nickel isotope data

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Trojan and Shangani mines are low-grade (<0.8 % Ni), komatiite-hosted nickel sulfide deposits associated with ca. 2.7 Ga volcano-sedimentary sequences of the Zimbabwe craton. At both mines, nickel sulfide mineralization is present in strongly deformed serpentinite bodies that are enveloped by a complex network of highly sheared, silicified, and sulfide-bearing metasedimentary rocks. Strong, polyphase structural–metamorphic–metasomatic overprints in both the Trojan and Shangani deposits make it difficult to ascertain if sulfide mineralization was derived from orthomagmatic or hydrothermal processes, or by a combination of both. Multiple S, Fe, and Ni isotope analyses were applied to test these competing models. Massive ores at Shangani Mine show mass-dependent fractionation of sulfur isotopes consistent with a mantle sulfur source, whereas S-isotope systematics of net-textured ore and disseminated ore in talcose serpentinite indicates mixing of magmatic and sedimentary sulfur sources, potentially via post-magmatic hydrothermal processes. A restricted range of strongly mass-independent Δ33S values in ore samples from Trojan Mine likely reflects high-temperature assimilation of sulfur from supracrustal rocks and later superimposed low-temperature hydrothermal remobilization. Iron isotope values for most Ni-bearing sulfides show a narrow range suggesting that, in contrast to sulfur, nearly all of iron was derived from an igneous source. Negative Ni isotope values also agree with derivation of Ni from ultramafic melt and a significant high-temperature fractionation of Ni isotopes. Fe isotope values of some samples from Shangani Mine are more fractionated than expected to occur in high-temperature magmatic systems, further suggesting that hydrothermal processes were involved in either low-grade ore formation (liberation of Ni from olivine by sulfur-bearing hydrothermal fluids) or remobilization of existing sulfides potentially inducing secondary Ni-sulfide mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anbar AD, Rouxel O (2007) Metal stable isotopes in paleoceanography. Annu Rev Earth Planet Sci 35:717–746

    Article  Google Scholar 

  • Archer C, Vance D (2006) Coupled Fe and S isotope evidence for Archean microbial Fe (III) and sulfate reduction. Geology 34:153–156

    Article  Google Scholar 

  • Arndt NT, Lesher CM, Czamanske GK (2005) Mantle-derived magmas and magmatic Ni–Cu–(PGE) deposits. Econ Geol, 100th Anniv 5:23

    Google Scholar 

  • Baglow N (1986) The Epoch nickel deposit, Zimbabwe. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 255–262

  • Baglow N (1992) Bindura, geological survey of Zimbabwe, 1: 100,000 geological map sheet

  • Barnes SJ (2006) Komatiite-hosted nickel sulfide deposits: geology, geochemistry, and genesis. In: Barnes SJ (ed) Nickel deposits of the Yilgarn Craton. Soc Econ Geol Spec Publ 13. Society of Economic Geologists, Littleton, pp 51–97

  • Barrett FM, Binns RA, Groves DI, Marston RJ, McQueen KG (1977) Structural history and metamorphic modification of Archean volcanic-type nickel deposits, Yilgarn Block, Western Australia. Econ Geol 72:1195–1223

    Article  Google Scholar 

  • Barrie CT (1999) Komatiite flows of the Kidd Creek footwall, Abitibi Subprovince, Canada. Econ Geol Monographs 10:143–161

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Bavinton OA (1981) The nature of sulfidic sediments at Kambalda and their broad relationships with associated ultramafic rocks and nickel ores. Econ Geol 76:1606–1628

    Article  Google Scholar 

  • Bekker A, Barley ME, Fiorentini ML, Rouxel OJ, Rumble D, Beresford SW (2009) Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326:1086–1089

    Article  Google Scholar 

  • Bekker A, Hofmann A, Rumble D, Rouxel O (2008) Sulfidic organic-rich shales in the Archean low-sulfate ocean: evidence for transient oxygenated conditions, enhanced volcanism, or low sedimentation rates? Geochim Cosmochim Acta 72(Supplement 1):A69

    Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  Google Scholar 

  • Bennett SA, Rouxel OJ, Schmidt K, Garbe-Schönberg D, Statham PJ, German CR (2009) Iron isotope fractionation in a buoyant hydrothermal plume from the Mid-Atlantic Ridge at 5°S. Geochim Cosmochim Acta 73:5619–5634

    Article  Google Scholar 

  • Bolhar R, Van Kranendonk MJ, Kamber BS (2005) A trace element study of siderite–jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton—formation from hydrothermal fluids and shallow seawater. Precambrian Res 137:93–114

    Article  Google Scholar 

  • Butler IB, Archer C, Vance D, Oldroyd A, Rickar D (2005) Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett 236:430–442

    Article  Google Scholar 

  • Cameron V, Vance D, Archer C, House CH (2009) A biomarker based on the stable isotopes of nickel. Proc Natl Acad Sci USA 106:10944–10948

    Article  Google Scholar 

  • Cas RAF, Beresford SW (2001) Field characteristics and erosional processes associated with komatiitic lavas: implications for flow behavior. Can Mineral 39:505–524

    Article  Google Scholar 

  • Chimimba LR (1984) Geology and mineralization at Trojan nickel mine, Zimbabwe. In: Buchanan DL, Jones MJ (eds) Sulfide deposits in mafic and ultramafic rocks. Institution of Mining and Metallurgy, London, pp 147–155

    Google Scholar 

  • Chimimba LR, Ncube SMN (1986) Nickel sulfide mineralisation at Trojan mine, Zimbabwe. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 249–253

  • Chimimba LR (1987) The geology and mineralisation of Trojan nickel mine, Bindura area, Zimbabwe. Ph.D. thesis, University of Zimbabwe, Harare

  • Condie KC, Wronkiewicz DJ (1990) The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth Planet Sci Lett 97:256–267

    Article  Google Scholar 

  • Cook DL, Clayton RN, Wadhwa M, Janney PE, Davis AM (2008) Nickel isotopic anomalies in troilite from iron meteorites. Geophys Res Lett 35, L01203

  • Cowden A (1988) Emplacement of komatiite lava flows and associated nickel sulfides at Kambalda, Western Australia. Econ Geol 83:436–442

    Article  Google Scholar 

  • Cowden A, Roberts DE (1990) Komatiite hosted nickel sulfide deposits, Kambalda. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Australasian Institution of Mining and Metallurgy, Melbourne, pp 567–581

    Google Scholar 

  • Craddock PR, Dauphas N (2011) Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet Sci Lett 303:121–132

    Article  Google Scholar 

  • Craig JR, Vokes FM (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineral Mag 57:3–18

    Article  Google Scholar 

  • Dauphas N, Rouxel O (2006) Mass spectrometry and natural variations of iron isotopes. Mass Spectrom Rev 25:515–550

    Article  Google Scholar 

  • Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett 288:255–267

    Article  Google Scholar 

  • Dirks PHGM, Sithole TA (1996) Report on structural controls on nickel mineralisation at Shangani Mine. Consultant report. Anglo American Corporation, Zimbabwe

    Google Scholar 

  • Dirks PHGM, Jelsma HA (1998) Silicic layer-parallel shear zones in a Zimbabwean greenstone sequence; horizontal accretion preceding doming. Gondwana Res 1:177–194

    Article  Google Scholar 

  • Donaldson MJ (1981) Redistribution of ore elements during serpentinization and talc–carbonate alteration of some Archean dunites, Western Australia. Econ Geol 76:1698–1713

    Article  Google Scholar 

  • Eckstrand OR (1975) The Dumont serpentinite: a model for control of opaque nickeliferous mineral assemblages by alteration reactions in ultramafic rocks. Econ Geol 70:183–201

    Article  Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13

    Google Scholar 

  • Farquhar J, Wing BA (2005) The terrestrial record of stable sulfur isotopes: a review of the implications for evolution of Earth’s sulfur cycle. In: McDonald I, Boyce AJ, Butler IB, Herrington RJ, Polya DA (eds) Mineral deposits and earth evolution. Geol Soc London Spec Publ 248. Geological Society of London, London, pp 167–177

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–758

    Article  Google Scholar 

  • Farquhar J, Savarino J, Airieau S, Thiemens MH (2001) Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J Geophys Res 106:1–11

    Article  Google Scholar 

  • Fiorentini ML, Bekker A, Rouxel O, Wing BA, Maier W, Rumble D (2012) Multiple sulfur and iron isotope composition of magmatic Ni–Cu–(PGE) sulfide mineralization from Eastern Botswana. Econ Geol 107:105–116

    Article  Google Scholar 

  • Fleet ME, Pan Y (1994) Fractional crystallization of anhydrous sulfide liquid in the system Fe–Ni–Cu–S, with application to magmatic sulfide deposits. Geochim Cosmochim Acta 58:3369–3377

    Article  Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Article  Google Scholar 

  • Gueguen B, Rouxel O, Ponzevera E, Bekker A, Fouquet Y (2013) Nickel isotope variations in terrestrial silicate rocks and geological reference materials measured by MC-ICP-MS. Geostand Geoanal Res. doi:10.1111/j.1751-908X.2013.00209.x

    Google Scholar 

  • Gresham JJ, Loftus-Hills GD (1981) The geology of the Kambalda nickel field, Western Australia. Econ Geol 76:1373–1416

    Article  Google Scholar 

  • Groves DI, Korkiakoski EA, McNaughton NJ, Lesher CM, Cowden A (1986) Thermal erosion by komatiites at Kambalda, Western Australia, and the genesis of nickel ores. Nature 319:136–139

    Article  Google Scholar 

  • Grguric BA, Rosengren NM, Fletcher CM, Hronsky JM (2006) Type 2 deposits: geology, mineralogy and processing of the Mt. Keith and Yakabindie orebodies, Western Australia. In: Barnes SJ (ed) Nickel deposits of the Yilgarn Craton. Soc Econ Geol Spec Publ 13. Society of Economic Geologists, Littleton, pp 119–138

  • Guilbaud R, Butler IB, Ellam RM (2011) Abiotic pyrite formation produces a large Fe isotope fractionation. Science 332:1548–1551

    Article  Google Scholar 

  • Harrison NM (1969) The geology of the country around Ford Rixon and Shangani. Rhod Geol Surv Bull 61

  • Hiebert RS, Bekker A, Houle MG, Lesher CM, Wing BA (2012) Multiple sulphur isotopes as a method to evaluate sulphur sources and a potential exploration tool in the komatiite associated nickel-copper-(Platinum Group Elements) Hart Deposit, Shaw Dome, Abitibi Greenstone Belt, Ontario. Ontario Geological Survey, Open File Report 6280:45-1–45-9

    Google Scholar 

  • Hiebert R, Bekker A, Wing BA, Rouxel OJ (2013) The role of paragneiss assimilation in the origin of the Voisey’s Bay Ni–Cu sulfide deposit, Labrador: multiple S and Fe isotope evidence. Econ Geol (in press)

  • Hill RET, Barnes SJ, Gole MJ, Dowling SE (1995) The volcanology of komatiites as deduced from field relationships in the Norseman–Wiluna greenstone belt, Western Australia. Lithos 34:158–188

    Google Scholar 

  • Hofmann A, Harris C (2008) Stratiform alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5–3.3 Ga ago. Chem Geol 257:224–242

    Article  Google Scholar 

  • Hofmann A, Dirks PHGM, Jelsma HA (2002) Late Archaean clastic sediments (Shamvaian Group) of the Zimbabwe craton: first observations from the Bindura–Shamva greenstone belt. Can J Earth Sci 39:1689–1708

    Article  Google Scholar 

  • Hofmann A, Dirks PHGM, Jelsma HA, Matura N (2003) A tectonic origin for ironstone horizons in the Zimbabwe craton and their significance for greenstone belt geology. J Geol Soc London 160:83–97

    Article  Google Scholar 

  • Hofmann A, Bekker A, Rouxel O, Rumble D, Master S (2009) Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: a new tool for provenance analysis. Earth Planet Sci Lett 286:436–445

    Article  Google Scholar 

  • Hopwood T (1981) The significance of pyritic black shales in the genesis of Archean nickel sulfide deposits. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, 9. Elsevier, Amsterdam, pp 411–468

    Google Scholar 

  • Hronsky JMA, Schodde RC (2006) Nickel exploration history of the Yilgarn craton: from the nickel boom to today. In: Barnes SJ (ed) Nickel deposits of the Yilgarn Craton. Soc Econ Geol Spec Publ 13. Society of Economic Geologists, Littleton, pp 1–11

  • Hu GX, Rumble D, Wang PL (2003) An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim Cosmochim Acta 67:3101–3118

    Article  Google Scholar 

  • Hulston JR, Thode HG (1965) Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3484

    Article  Google Scholar 

  • Huh MC, Lazar C, Young ED, Manning CE (2009) High temperature fractionation of Ni stable isotopes between metal and silicates: constraints from experimental study at 800°C and 10kbar. 2009AGUFM.V11C1974H

  • Huppert HE, Sparks RSJ, Turner JS, Arndt NT (1984) Emplacement and cooling of komatiite lavas. Nature 309:19–22

    Article  Google Scholar 

  • Jamieson JW, Wing BA, Farquhar J, Hannington MD (2013) Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nature Geosci 6:61–64

    Google Scholar 

  • Jelsma HA (1993) Granites and greenstones in northern Zimbabwe, tectono-thermal evolution and source regions. Ph.D. thesis, Free University of Amsterdam

  • Jelsma HA, Dirks PHGM (2000) Tectonic evolution of a greenstone sequence in northern Zimbabwe: sequential early stacking and pluton diapirism. Tectonics 19:135–152

    Article  Google Scholar 

  • Jelsma HA, Vinyu ML, Valbracht PJ, Davies GR, Wijbrans JR, Verdurmen EAT (1996) Constraints on Archaean crustal evolution of the Zimbabwe craton: a U–Pb zircon, Sm–Nd and Pb–Pb whole-rock isotope study. Contrib Mineral Petrol 124:55–70

    Article  Google Scholar 

  • Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci 36:457–493

    Article  Google Scholar 

  • Konnunaho JP, Hanski EJ, Bekker A, Halkoaho TAA, Hiebert RS, Wing BA, Karinen TT (2013) The Archean komatiite-hosted, PGE-bearing Ni–Cu sulfide deposit at Vaara, eastern Finland. Miner Deposita. doi:10.1007/s00126-013-0469-0

  • Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1–18

    Google Scholar 

  • Killick AM (1986) The Damba sulfide nickel deposits, Zimbabwe. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 263–273

  • Lacroix S, Darling R (1991) Tectonized Cu–Ni deposits of the Aulneau–Redcliff area, Central Labrador Trough, Quebec. Econ Geol 56:718–739

    Article  Google Scholar 

  • Lesher CM (1989) Komatiite-associated nickel sulfide deposits. Rev Econ Geol 4:45–101

    Google Scholar 

  • Lesher CM, Burnham OM (2001) Multicomponent elemental and isotopic mixing in Ni–Cu–(PGE) ores at Kambalda, Western Australia. Can Mineral 39:421–446

    Article  Google Scholar 

  • Lesher CM, Keays RR (2002) Komatiite-associated Ni–Cu–(PGE) deposits: mineralogy, geochemistry, and genesis. Canadian Institute of Mining, Metallurgy and Petroleum Special Volume 54:579–617

    Google Scholar 

  • Maiden KJ, Chimimba LR, Smalley TJ (1986) Cuspate ore-wall rock interfaces, piercement structures, and the localization of some sulfide ores in deformed sulfide deposits. Econ Geol 81:1464–1472

    Article  Google Scholar 

  • Marshall B, Gilligan LB (1989) Durchbewegung structure, piercement cusps, and piercement veins in massive sulfide deposits: formation and interpretation. Econ Geol 84:2311–2319

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–21

    Article  Google Scholar 

  • Miller MF (2002) Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66:1881–1889

    Article  Google Scholar 

  • Morse JW, Berner RA (1995) What determines sedimentary C/S ratios? Geochim Cosmochim Acta 59:1073–1077

    Article  Google Scholar 

  • Moubray RJ, Brand EL, Hofmeyr PK, Potter M (1979) The Hunters Road nickel prospect. In: Anhaeusser CR, Foster RP, Stratten T (eds) A symposium on mineral deposits and the transportation and deposition of metals: Geol Soc S Afr Spec Publ 5. Geological Society of South Africa, Johannesburg, pp 109–116

  • Moynier F, Blichert-Toft J, Telouk P, Luck JM, Albarede F (2007) Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochim Cosmochim Acta 71:4365–4379

    Article  Google Scholar 

  • Naldrett AJ (1981) Nickel sulfide deposits: classification, composition, and genesis. Econ Geol 75:628–685

    Google Scholar 

  • Naldrett AJ (1989) Magmatic sulfide deposits. Oxford University Press, Oxford

    Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry, and exploration. Springer, Berlin

    Book  Google Scholar 

  • Ono S, Beukes NJ, Rumble D (2009) Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res 169:48–57

    Article  Google Scholar 

  • Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    Article  Google Scholar 

  • Planavsky NJ, Rouxel O, Bekker A, Hofmann A, Little C, Lyons TW (2012) Iron isotope composition of some Archean and Paleoproterozoic iron formations. Geochim Cosmochim Acta 80:158–169

    Article  Google Scholar 

  • Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846

    Article  Google Scholar 

  • Prendergast MD (2001) Komatiite-hosted Hunters Road nickel deposit, central Zimbabwe: Physical volcanology and sulfide genesis. Aus J Earth Sci 48:681–694

    Google Scholar 

  • Prendergast MD (2003) The nickeliferous late Archean Reliance komatiitic event in the Zimbabwe craton—magmatic architecture, physical volcanology, and ore genesis. Econ Geol 98:865–891

    Article  Google Scholar 

  • Rice A, Moore JM (2001) Physical modeling of the formation of komatiite-hosted nickel deposits and a review of the thermal erosion paradigm. Can Mineral 39:491–503

    Article  Google Scholar 

  • Rouxel O, Dobbek N, Ludden J, Fouquet Y (2003) Iron Isotope Fractionation During Oceanic Crust Alteration. Chem Geol 202:155–182

    Google Scholar 

  • Rouxel O, Bekker A, Edwards K (2005) Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–1091

    Article  Google Scholar 

  • Rouxel O, Shanks WC, Bach W, Edwards KJ (2008) Integrated Fe and S-isotope study of seafloor hydrothermal vents at East Pacific rise 9–10 degrees N. Chem Geol 252:214–227

    Article  Google Scholar 

  • Schuessler JA, Schoenberg R, Behrens H, von Blanckenburg F (2007) The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt. Geochim Cosmochim Acta 71:417–433

    Article  Google Scholar 

  • Severmann S, Lyons TW, Anbar A, McManus J, Gordon G (2008) Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36:487–490

    Article  Google Scholar 

  • Siebert C, Nägler TF, Kramers JD (2001) Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst 2, 2000GC000124

  • Stone WE, Archibald NJ (2004) Structural controls on nickel sulphide ore shoots in Archaean komatiite, Kambalda, WA: the volcanic trough controversy revisited. J Struct Geol 26:1173–1194

    Article  Google Scholar 

  • Tanimizu M, Hirata T (2006) Determination of natural isotopic variation in nickel using inductively coupled plasma mass spectrometry. J Anal At Spectrom 21:1423–1426

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

  • Tomkins AG (2010) Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochim Cosmochim Acta 74:3246–3259

    Article  Google Scholar 

  • Tomschi HP (1987) Goldvorkommen im Archaischen Harare–Bindura–greenstone belt, Zimbabwe: Zusammenhänge zwischen Lagerstättenbildung und greenstone belt Entwicklung. Ph.D. thesis, University of Köln

  • Trofimovs J, Davis BK, Cas RAF (2004) Contemporaneous ultramafic and felsic intrusive and extrusive magmatism in the Archaean Boorara Domain, Eastern Goldfields Superterrane, Western Australia, and its implications. Precambrian Res 131:283–304

    Article  Google Scholar 

  • Ueno Y, Ono S, Rumble D, Maruyama S (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691

    Google Scholar 

  • Viljoen MJ, Bernasconi A (1979) The geochemistry, regional setting and genesis of the Shangani–Damba nickel deposits, Rhodesia. In: Anhaeusser CR, Foster RP, Stratten T (eds) A symposium on mineral deposits and the transportation and deposition of metals. Geol Soc S Afr Spec Publ 5. Geological Society of South Africa, Johannesburg, pp 67–98

  • Viljoen MJ, Bernasconi A, van Coller N, Kinloch E, Viljoen RP (1976) The geology of the Shangani nickel deposit, Rhodesia. Econ Geol 71:76–95

    Article  Google Scholar 

  • Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133

    Article  Google Scholar 

  • Williams DAC (1979) The association of some nickel sulfide deposits with komatiite volcanism in Rhodesia. Can Mineral 17:337–350

    Google Scholar 

  • Williams DA, Kerr RC, Lesher CM (2011) Mathematical modeling of thermomechanical erosion beneath Proterozoic komatiitic basaltic sinuous rilles in the Cape Smith Belt, New Québec, Canada. Miner Deposita 46:943–958

    Article  Google Scholar 

  • Wilson JF, Nesbitt RW, Fanning CM (1995) Zircon geochronology of Archaean felsic sequences in the Zimbabwe craton: a revision of greenstone stratigraphy and a model for crustal growth. In: Coward MP, Ries AC (eds) Early Precambrian processes. Geol Soc Spec Publ 95, pp 109–126

Download references

Acknowledgments

AH acknowledges support by NAI International Collaboration Grant and NRF grant FA2005040400027. AB participation was supported by NSF grant EAR 05-45484, NAI award no. NNA04CC09A, and NSERC Discovery grant. Research by PD was supported by Stichting Schürmannfonds grants 1996-2003/13 and by extensive support by AngloAmerican PLC in allowing access to Zimbabwean Ni deposits. Support for OR and BG was provided by Europole Mer, ISOMAR, and NSF-EAR grant. We thank Charles Makuni for access to drill core; the Department of Geology, University of Zimbabwe for logistical support; and Emmanuel Ponzevera, Yoan Germain, and Celine Liorzou (PSO, Brest, France) for analytical support. Constructive comments by journal editor Bernd Lehmann, Boswell Wing, and two additional reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hofmann.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, A., Bekker, A., Dirks, P. et al. Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron, and nickel isotope data. Miner Deposita 49, 75–100 (2014). https://doi.org/10.1007/s00126-013-0476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-013-0476-1

Keywords

Navigation