Skip to main content
Log in

Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Several major iron deposits occur in the Quadrilátero Ferrífero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Cauê Formation, regionally called itabirite, was transformed into high- (Fe >64%) and low-grade (30% < Fe < 64%) hematite ores. Based on their mineralogical composition, three major types of itabirites occur in the QF: siliceous, dolomitic, and amphibolitic itabirite. Unlike other mines in the QF, the Águas Claras Mine contained mainly high-grade ores hosted within dolomitic itabirite. Two distinct types of high-grade ore occurred at the mine: soft and hard. The soft ore was the most abundant and represented more than 85% of the total ore mined until it was mined out in 2002. Soft and hard ores consist essentially of hematite, occurring as martite, anhedral to granular/tabular hematite and, locally, specularite. Gangue minerals are rare, consisting of dolomite, sericite, chlorite, and apatite in the hard and soft ores, and Mn-oxides and ferrihydrite in the soft ore where they are concentrated within porous bands. Chemical analyses show that hard and soft ores consist almost entirely of Fe2O3, with a higher amount of detrimental impurities, especially MnO, in the soft ore. Both hard and soft ores are depleted in trace elements. The high-grade ores at the Águas Claras Mine have at least a dual origin, involving hypogene and supergene processes. The occurrence of the hard, massive high-grade ore within “fresh” dolomitic itabirite is evidence of its hypogene origin. Despite the contention about the origin of the dolomitic itabirite (if this rock is a carbonate-rich facies of the Cauê Formation or a hematite–carbonate precursor of the soft high-grade ore), mineralogical and geochemical features of the soft high-grade ore indicate that it was formed by leaching of dolomite from the dolomitic itabirite by meteoric water. The comparison of the Águas Claras, Capão Xavier and Tamanduá orebodies shows that the original composition of the itabiritic protore plays a major role in the genesis of high- and low-grade soft ores in the QF. Under the same weathering and structural conditions, the dolomitic itabirite is the more favorable to form high-grade deposits than siliceous itabirite. Field relations at the Águas Claras and Capão Xavier deposits suggest that it is not possible to form huge soft high-grade supergene deposits from siliceous itabirite, unless another control, such as impermeable barriers, had played an important role. The occurrence in the Tamanduá Mine of a large, soft, high-grade orebody formed from siliceous itabirite and closely associated with hypogene hard ore suggests that large, soft, high-grade orebodies of the Quadrilátero Ferrífero, which occur within siliceous itabirite, have a hypogene contribution in their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alkmim FF, Marshak S (1998) Transamazonian orogeny in the São Francisco craton, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res 90:29–58

    Article  Google Scholar 

  • Babinski M, Chemale F Jr, Van Schmus WR (1995) The Pb/Pb ages of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res 72:235–245

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Article  Google Scholar 

  • Bekker A, Sial AN, Karhu JA, Ferreira VP, Noce CM, Kaufman AJ, Romano AW, Pimentel MM (2003) Chemostratigraphy of carbonates from the Minas Supergroup, Quadrilátero Ferrífero (Iron Quadrangle), Brazil: a stratigraphic record of early proterozoic atmospheric, biogeochemical and climatic change. Am J Sci 303:865–904

    Article  Google Scholar 

  • Beukes NJ, Gutzmer J, Mukhopadhyay J (2002) The geology and genesis of high-grade iron ore deposits. Proceedings of Iron Ore 2002 Conference, 9–11 September 2002, Perth, Western Australia. Special AusIMM Publication Series No. 7/2002, pp 23–29

  • Brimhall GH, Dietrich WE (1987) Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim Cosmochim Acta 51:567–587

    Article  Google Scholar 

  • Brimhall GH, Alpers C, Cunningham AB (1985) Analysis of supergene ore-forming processes using mass balance principles. Econ Geol 80:1227–1254

    Google Scholar 

  • Brimhall GH, Lewis CJ, Ford C, Bratt J, Taylor G, Warin O (1991) Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in lateritization. Geoderma 51:51–91

    Article  Google Scholar 

  • Cabral AR, Rocha Filho OG, Jones RD (2003) Hydrothermal origin of soft hematite ore in the Quadrilátero Ferrífero of Minas Gerais, Brazil: petrographic evidence from the Gongo Soco iron ore deposit. Appl Earth Sci (Trans Inst Min Metall B) 112:B279–B286

    Article  Google Scholar 

  • Chadwick OA, Brimhall GH, Hendricks DM (1990) From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3:369–390

    Article  Google Scholar 

  • Chemale F Jr, Rosière CA, Endo I (1994) The tectonic evolution of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Res 65:25–54

    Article  Google Scholar 

  • Childs CW, Baker-Sherman (1984) Moessbauer spectra and parameters of standard samples 1. Department of Scientific and Industrial Research, New Zealand Soil Bureau, Lower Hutt, New Zealand, pp 50

  • Cornell RM (1988) The influence of some divalent cations on the transformation of ferrihydrate into more crystalline products. Clays Clay Miner 23:329–332

    Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides. Wiley, New York

    Google Scholar 

  • Dalstra HJ, Guedes S (2004) Giant hydrotermal hematite deposits with Mg-Fe metasomatism: a comparison of the Carajás, Hamersley, and other iron mines. Econ Geol 99:1793–1800

    Article  Google Scholar 

  • Dalstra HJ, Harding AE, Taylor D (2002) Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia—a reply. Econ Geol 97:174–176

    Article  Google Scholar 

  • Dorr JVN (1964) Supergene iron ores of Minas Gerais, Brazil. Econ Geol 59:1203–1240

    Google Scholar 

  • Dorr JVN (1965) Nature and origin of the high-grade hematite ores of Minas Gerais, Brazil. Econ Geol 60:1–46

    Google Scholar 

  • Dorr JVN (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. US Geol Surv Prop Pap 110:641

    Google Scholar 

  • Eichler J (1968) O enriquecimento residual e supergênico dos itabiritos através do intemperismo. Geologia 1:29–40

    Google Scholar 

  • Gomes JCM (1986) As minas de Águas Claras, Mutuca, Pico e outros depósitos de minério de ferro no Quadrilátero Ferrífero, Minas Gerais In: Schobbenhaus C, Coelho CES (eds) Principais Depósitos Minerais do Brasil. DNPM/CPRM, Brasília, pp 65–75

    Google Scholar 

  • Guedes SC, Rosière CA, Marley M, Lobato LM (2002) Carbonate alteration associated with the Carajás high-grade hematite deposits, Brazil. Proceedings of Iron Ore 2002 Conference, 9–11 September 2002, Perth, Western Australia. Special AusIMM Publication Series No. 7/2002, pp 63–66

  • Guild PW (1953) Iron deposits of the Congonhas District, Minas Gerais, Brazil. Econ Geol 48:639–676

    Google Scholar 

  • Hackspacher PC, Oliveira VT Jr, Siemes H, Rosière CA, Moreno MMT (2001) Textures of hematitic and itabiritic iron ores in the Conceição Mine, Quadrilátero Ferrífero, Minas Gerais, Brazil. Z dt Geol Ges 152:467–478

    Google Scholar 

  • Hagemann SG, Rosière, CA, Lobato, LM, Baars, F, Zucchetti, M, Figueiredo e Silva, RC (2005) Controversy in genetic models for Proterozoic high-grade, banded iron formation (BIF)-related iron deposits—unifying or discrete model(s)? Proceedings of Iron Ore 2005 Conference, 19–21 September 2005, Fremantle, Western Australia. Special AusIMM Publication Series No. 8/2005, pp 67–71

  • Harder EC, Chamberlain RT (1915) The geology of the central Minas Gerais, Brazil. J Geol 23:341–378, 385–424

    Article  Google Scholar 

  • Harmsworth RA, Kneeshaw M, Morris RC, Robinson CJ, Shrivastava PK (1990) BIF-Derived iron ores of the Hamersley Province In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 617–642

    Google Scholar 

  • Kneeshaw M, Kepert DA (2002) Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia—a discussion. Econ Geol 97:173–176

    Article  Google Scholar 

  • Lagoeiro LE (1998) Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals. J Metamorph Geol 16:415–423

    Article  Google Scholar 

  • Lagoeiro LE, Romano RC, Venturini PN (2004) Mineralogy of the Iron Formation in the Itabira Mines, Iron Quadrangle, Brazil. In: Pechio M, Andrade FRDd, Agostino LZ, Kahn H, Sant’Agostino LM, Tassinari MMML (eds) ICAM Brazil 2004. International Council for Applied Mineralogy do Brasil, Águas de Lindóia, pp 885–887

  • Maizatto JR (2001) Análise bioestratigráfica, paleoecológica e sedimentológica das bacias Terciárias do Gandarela e Fonseca—Quadrilátero Ferrífero—com base nos aspectos palinológicos e sedimentares Escola de Minas, Departamento de Geologia. Universidade Federal de Ouro Preto, Ouro Preto, p 249

  • McLennan SB (1989) Rare earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of the rare earth elements. Mineralogical Society of America, Washington, pp 169–200

    Google Scholar 

  • Morris RC (2002a) Discussion and reply. Opaque mineralogy and magnetic properties of selected banded iron-formations, Hamersley Basin, Western Australia. Aust J Earth Sci 49:579–586

    Article  Google Scholar 

  • Morris RC (2002b) Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia—a discussion. Econ Geol 97:177–181

    Article  Google Scholar 

  • Morris RC (2002c) Iron ore genesis and post-ore metasomatism at Mount Tom Price. Proceedings of Iron Ore 2002 Conference, 9–11 September 2002, Perth, Western Australia. Special AusIMM Publication Series No. 7/2002, pp 3–13

  • Murad E, Schwertmann U (1986) The influence of Al-substitution and crystallinity on room temperature Mössbauer spectrum of hematite. Clays Clay Miner 34:1–6

    Article  Google Scholar 

  • Park CF (1959) Origin of hard hematite in itabirite. Econ Geol 54:573–587

    Article  Google Scholar 

  • Pires FRM (1995) Textural and mineralogical variations during metamorphism of the Proterozoic Itabira Iron Formation in the Quadrilátero Ferrífero, Minas Gerais, Brazil. An Acad Bras Ciênc 67:77–105

    Google Scholar 

  • Pomerene JB (1964) Geology and mineral deposits of the Belo Horizonte, Ibirité and Macacos quadrangles. USGS Professional Paper, p 84

  • Ribeiro DT (2003) Enriquecimento Supergênico de Formações Ferríferas Bandadas: Estruturas de Colapso e Desordem Instituto de Geociências. Universidade Federal do Rio de Janeiro, Rio de Janeiro, p 123

  • Rosière CA, Chemale F Jr (2000) Itabiritos e minérios de ferro de alto teor do Quadrilátero Ferrífero—Uma visão geral e discussão. Geonomos 8:27–43

    Google Scholar 

  • Rosière CA, Rios FJ (2004) The origin of hematite in high grade iron ores based on infrared microscopy and fluid inclusion studies: the example of the Conceição Mine, Quadrilátero Ferrífero, Brazil. Econ Geol 99:611–624

    Article  Google Scholar 

  • Rosière CA, Chemale F Jr, Guimarães MLV (1993) Um modelo para a evolução microestrutural dos minérios de ferro do Quadrilátero Ferrífero: Parte I—estruturas e recristalização. Geonomos 1:65–84

    Google Scholar 

  • Rosière CA, Siemes H, Quade H, Brokmeier H, Jansen EM (2001) Microstructures, textures and deformation mechanisms in hematite. J Struct Geol 23:1429–1440

    Article  Google Scholar 

  • Schwertmann U, Cambier P, Murad E (1985) Properties of goethites of varying crystallinity. Clays Clay Miner 33:369–378

    Article  Google Scholar 

  • Sial AN, Ferreira VP, De Almeida AR, Romano AW, Parente CV, Da Costa ML, Santos VH (2000) Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil. An Acad Bras Ciênc 72:539–558

    Google Scholar 

  • Spier CA (2005) Geoquímica e gênese das formações ferríferas bandadas e do minério de ferro da Mina de Águas Claras, Quadrilátero Ferrífero. MG. PhD thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, p 298

  • Spier CA, Oliveira SMB, Rosière CA (2003) Geology and geochemistry of the Águas Claras and Pico iron mines, Quadrilátero Ferrífero, Minas Gerais, Brazil. Miner Depos 38:751–774

    Article  Google Scholar 

  • Spier CA, Vasconcelos PM, Oliveira SMB (2006) 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Chem Geol 234:79–104

    Article  Google Scholar 

  • Spier CA, Oliveira SMB, Sial AN, Rios FJ (2007) Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Res 152:170–206

    Article  Google Scholar 

  • Taylor D, Dalstra HJ, Harding AE, Broadbent GC, Barley ME (2001) Genesis of high-grade hematite orebodies of the Hamerley Province, Western Australia. Econ Geol 96:837–873

    Article  Google Scholar 

  • Thorne WS, Hagemann SG, Barley ME (2004) Petrographic and geochemical evidence for hydrothermal evolution of the North Deposit, Mt Tom Price, Western Australia. Miner Depos 39:766–783

    Article  Google Scholar 

  • Veizer J, Clayton RN, Hinton RW, Von Burn V, Mason TR, Buck SG, Hoefs J (1990) Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean. Geochim Cosmochim Acta 54:2717–2729

    Article  Google Scholar 

Download references

Acknowledgments

This paper is an integral part of the senior author’s Ph.D. thesis presented at the Geoscience Institute of the University of São Paulo (USP). This research project was possible thanks to the grant issued by the Comissão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to C.A.S (grant BEX2189/02-0). C.A.S also thank Minerações Brasileiras Reunidas (MBR) for releasing him of his usual activities as a mine geologist during the period of his stay at the University of Queensland. We are grateful to the staff of the Center of Microscopy and Microanalysis of the University of Queensland (CMM), particularly Ron Rasch, Grahem Auchterfolie, and Kim Sewell, for their assistance. We are also very grateful to Nivaldo Lúcio Speziali for his help with the determination of the unit cell parameters of hematite. Steffen Hagemann, Hilke Dalstra, Jens Gutzmer, and Warren Thorne are thanked for their detailed and insightful review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Spier.

Additional information

Editorial handling: S. Hagemann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix A

List of the samples, location, and analytical procedures (PDF 2.77 MB).

Appendix B

Major and trace element composition of the hard and soft ores (PDF 1.22 MB).

Appendix C

Rare earth element composition of the hard and soft ores (PDF 601 KB).

Appendix D

Bulk and calculated1 densities and porosity of the soft ore (PDF 89.7 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spier, C.A., de Oliveira, S.M.B., Rosière, C.A. et al. Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil. Miner Deposita 43, 229–254 (2008). https://doi.org/10.1007/s00126-007-0157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-007-0157-z

Keywords

Navigation