Skip to main content

Advertisement

Log in

The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12–19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341–332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calc-alkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alexander EC, Mickelson GM, Lanphere MA (1978) Mmhb-1: a new 40Ar/39Ar dating standard. In: Zartman RE (ed) Short papers of the Fourth International Conference, Geochronology, Cosmochronology, and Isotope Geology, vol 78-701, pp 6-81

  • Amelin Y, Li C, Valeyev O, Naldrett AJ (2000) Nd–Pb–Sr isotope systematics of crustal assimilation in the Voisey’s Bay and Mushuau intrusions, Labrador, Canada. Econ Geol 95:815–830

    Article  Google Scholar 

  • Arnold RG (1969) Pyrrhotite phase relations below 304°C. Econ Geol 64:405–419

    Article  Google Scholar 

  • Bachiller N (1996) Las alteraciones hidrotermales de los leucogranitos del Complejo intrusivo de Burguillos del Cerro (Badajoz). Edad, geoquímica y modelo de procedencia y evolución de los fluidos. Master Thesis, Universidad Complutense de Madrid, Madrid

  • Barnes SJ, Tang Z (1999) Chrome spinels from the Jinchuan Ni–Cu sulfide deposit, Gansu province, People’s Republic of China. Econ Geol 94:343–356

    Google Scholar 

  • Bateman R, Martin MP, Castro A (1992) Mixing of cordierite granitoid and pyroxene gabbro, and fractionation, in the Santa Olalla tonalite (Andalucia). Lithos 28:111–131

    Article  Google Scholar 

  • Bateman R, Rosa JD, de la Castro A (1994) Mineral chemical disequilibrium and hybridization in the Santa Olalla Pluton, Spain. Bol Soc Esp Mineral 17:83–84

    Google Scholar 

  • Bea F, Montero P, Garuti G, Zaccarini F (1997) Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnets. A LA-ICP-MS study. Geostand Newsl 21:253–270

    Google Scholar 

  • Beard JS, Day HW (1988) Petrology and emplacement of reversely zoned gabbro–diorite plutons in the Smartville Complex, Northern California. J Petrol 29:965–995

    Google Scholar 

  • Bertrand P, Mercier JC (1985) The mutual solubility of coexisting ortho- and clinopyroxene: toward the absolute geothermometer for the natural system? Earth Planet Sci Lett 76:109–122

    Article  Google Scholar 

  • Bomati O, Ortega L, Lunar R, Sierra J, Moreno T, Garcia Palomero F (1999) Distribución de sulfuros de N–Cu–Fe y de minerales del grupo del platino en la mineralización intramagmática de Aguablanca (Badajoz): Implicaciones genéticas. Bol Soc Esp Mineral 22-A:19–20

    Google Scholar 

  • Carbonell R, Simancas F, Juhlin C, Pous J, Pérez Estaún A, Gonzalez Lodeiro F, Muñoz G, Heise W, Ayarza P (2004) Geophysical evidence of a mantle-derived intrusion in SW Iberia. Geophys Res Lett 31:L11601–L11604

    Article  Google Scholar 

  • Casquet C (1980) Fenómenos de endomorfismo, metamorfismo y metasomatismo en los mármoles de la Rivera de Cala (Sierra Morena). Doctoral thesis, Universidad Complutense, Madrid, p 295

  • Casquet C (1982) Metamorfismo de contacto en el borde N del plutón de Santa Olalla de Cala con especial enfasis en las rocas carbonatadas. Rev R Acad Cienc Exactas Fis Nat Madr 76:334–363

    Google Scholar 

  • Casquet C, Galindo C (2004) El magmatismo Varisco de la Zona de Ossa Morena. In: Geología de España, Vera JA (eds) Sociedad Geológica España-Instituto Geológico y Minero de España, Madrid, pp 194–199

  • Casquet C, Velasco F (1978) Contribución a la geología de los skarns cálcicos en torno a Santa Olalla de Cala (Huelva-Badajoz). Estud Geol 34:399–405

    Google Scholar 

  • Casquet C, Galindo C, Darbyshire DPF, Noble SR, Tornos F (1998) Fe–U–REE mineralization at Mina Monchi, Burguillos del Cerro, Spain: age and isotope (U–Pb, Rb–Sr and Sm–Nd) constraints on the evolution of the ores. Abstracts GAC-MAC-APGGQ, Quebec, p A28

  • Casquet C, Eguiluz L, Galindo C, Tornos F, Velasco F (1999) The Aguablanca Cu–Ni (PGE) intraplutonic ore deposit (Extremadura, Spain). Isotope (Sr, Nd, S) constraints on the source and evolution of magmas and sulfides. Geogaceta 24:71–74

    Google Scholar 

  • Casquet C, Galindo C, Tornos F, Velasco F (2001) The Aguablanca Cu–Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: isotope composition of magmas (Sr, Nd) and ore (S). Ore Geol Rev 18:237–250

    Article  Google Scholar 

  • Castro A, Fernandez C, El Hmidi H, El Biad M, Diaz M, Rosa J, Stuart F (1999) Age constraints to the relationships between magmatism, metamorphism and tectonism in the Aracena metamorphic belt, southern Spain. Geol Rundsch 88:26–37

    Google Scholar 

  • Cawthorn RG, Kruger FJ (2004) Petrology and Ni–Cu–PGE potential of the Insizwa Lobe, Mount Ayliff Intrusion, South Africa. Can Mineral 42:303–324

    Google Scholar 

  • Chai G, Naldrett AJ (1992) Characteristics of Ni–Cu–PGE mineralization and genesis of the Jinchuan Deposit, Northwest China. Econ Geol 87:1475–1495

    Google Scholar 

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4:1–28

    Article  Google Scholar 

  • Crespo A (1991) Evolución geotectónica del contacto entre la Zona de Ossa Morena y la Zona Surportuguesa en las Sierras de Aracena y Aroche (Macizo Iberico Meridional): un contacto mayor en la Cadena Hercinica Europea. Ediciones Universidad Granada, Granada, p 327

    Google Scholar 

  • Czamanske GK, Kunilov VE, Zientek ML, Cabri LJ, Likhachev AP, Calk LC, Oscarson RL (1992) A proton microprobe study of magmatic sulfide ores from the Noril’sk-Talnakh district, Siberia. Can Mineral 30:249–287

    Google Scholar 

  • Dallmeyer RD, Fonseca PE, Quesada C, Ribeiro A (1993) 40Ar/39Ar mineral age constraints for the tectonothermal evolution of a Variscan Suture in SW Iberia. Tectonophysics 222:177–194

    Article  Google Scholar 

  • Dallmeyer RD, Garcia Casquero JL, Quesada C (1995) 40Ar/39Ar mineral age constraints on the emplacement of the Burguillos del Cerro Igneous Complex (Ossa Morena Zone, SW Spain). Bol Geol Min 106:203–214

    Google Scholar 

  • Dalrymple GB, Alexander EC, Lanphere MA, Kraker GP (1981) Irradiation of samples for 40Ar/39Ar dating using the Geological Survey TRIGA reactor. U.S. Geological Survey Professional Paper 1176, p 55

  • Darbyshire DPF, Tornos F, Galindo C, Casquet C (1998) Sm–Nd and Rb–Sr constraints on the age and origin of magnetite mineralization in the Jerez de los Caballeros iron district of Extremadura, SW Spain. Chin Sci Bull (Suppl) 43:28

    Article  Google Scholar 

  • Davies G, Cawthorn RG, Barton JM Jr, Morton M (1980) Parental magma to the Bushveld Complex. Nature 287:33–35

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Diaz Azpiroz M, Castro A, Fernández C, López S, Fernández Caliani JC, Moreno-Ventas I (2004) The contact between the Ossa Morena and the South Portuguese zones. Characteristics and significance of the Aracena metamorphic belt, in its central sector between Aroche and Aracena (Huelva). J Iber Geol 30:23–52

    Google Scholar 

  • Doe BR, Zartman RE (1979) Plumbotectonics, the phanerozoic. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 22–70

    Google Scholar 

  • Ebel DS, Naldrett AJ (1996) Fractional crystallization of sulfide ore liquids at high temperature. Econ Geol 91:607–621

    Google Scholar 

  • Eguiluz L, Carracedo M, Apalategui O (1989) Stock de Santa Olalla de Cala (Zona de Ossa Morena, España). Stud Geol Salmant 4:145–157

    Google Scholar 

  • Eguiluz L, Gil Ibarguchi JI, Abalos B, Apraiz A (2000) Superposed Hercynian and Cadomian orogenic cycles in the Ossa Morena Zone and related areas of the Iberian Massif. Geol Soc Amer Bull 112:1398–1413

    Article  Google Scholar 

  • Fauré G (1986) Principles of isotope geology, 2nd edn. Wiley, New York, p 589

    Google Scholar 

  • Galindo C, Darbyshire F, Tornos F, Casquet C, Cuervo S (1995) Sm-Nd geochemistry and dating of magnetites: A case study from an Fe district in the SW of Spain. In: Pasava J, Kribek B, Zak K (eds) Mineral Deposits: from their origin to environmental impacts, vol. Balkema, Rotterdam, pp 41–43

    Google Scholar 

  • Galindo C, Casquet C (2004) El magmatismo Pre-varisco de la Zona de Ossa Morena. In: Vera JA (ed) Geología de España. SGE/IGME, Madrid, pp 190–194

    Google Scholar 

  • Garcia Casquero JL (1995) Intrusión múltiple y cuerpos ígneos politípicos: El Complejo Igneo de Burguillos del Cerro, un macizo diorítico zonado en el basamento varisco de la Península Ibérica. Bol Geol Min 106:379–398

    Google Scholar 

  • Gauthier M, Chartrand F, Trottier J (1994) Metallogenic epochs and metallogenic provinces of the Estrie-Beauce region, Southern Quebec Appalachians. Econ Geol 89:1322–1360

    Google Scholar 

  • Giese U, Walter R, Winterfeld C (1994) Geology of the southwestern Iberian Meseta II. The Aracena Metamorphic Belt between Almonaster La Real and Valdelarco, Huelva province (SW Spain). Neues Jahrb Geol Palaontol Abh 192:333–360

    Google Scholar 

  • Hoatson DM, Sun SS (2002) Archean layered mafic–ultramafic intrusions in the West Pilbara Craton, Western Australia: a synthesis of some of the oldest orthomagmatic mineralizing systems in the world. Econ Geol 97:847–872

    Article  Google Scholar 

  • IGME (1983) Mapa Geológico de España, hoja 916, Aroche. Instituto Geológico y Minero de España, Madrid, p 53

  • ITGE (1990) Mapa Geológico de España a escala 1/50.000 núm. 918 (Santa Olalla de Cala). Instituto Tecnológico Geominero de España, Madrid, p 46

  • Jahoda R, Andrews JR, Foster RP (1989) Structural controls of Monterroso and other gold deposits in NW Spain—fractures, jogs and hot jogs. Trans Inst Min Metall 98:b1–b6

    Google Scholar 

  • James RS, Easton RM, Peck DC, Hrominchuk JL (2002) The East Bull Lake intrusive suite: remnants of a ∼2.48 Ga large igneous and metallogenic province in the Sudbury area of the Canadian Shield. Econ Geol 97:1577–1606

    Article  Google Scholar 

  • Kerr A, Ryan B (2000) Threading the eye of the needle: lessons from the search for another Voisey’s Bay in Labrador, Canada. Econ Geol 95:725–748

    Article  Google Scholar 

  • Kunk MJ, Winick JA, Stanley JO (2001) 40Ar/39Ar age-spectrum and laser fusion data for volcanic rocks in west central Colorado. U.S. Geological Survey Open-File Report 01-472, pp 1–94

  • Leeman WP, Dasch EJ (1978) Strontium, lead and oxygen isotopic investigation of the Skaergard intrusion, east Greenland. Earth Planet Sci Lett 41:47–59

    Article  Google Scholar 

  • Lesher CM, Burnham OM, Keays RR, Barnes SJ, Hulbert L (2001) Trace element geochemistry and petrogenesis of barren and ore-associated komatiites. Can Mineral 39:673–696

    Google Scholar 

  • Li C, Naldrett AJ (2000) Melting reactions of gneissic inclusions with enclosing magma at Voisey’s Bay, Labrador, Canada: implications with respect to ore genesis. Econ Geol 95:801–814

    Article  Google Scholar 

  • Li C, Lightfoot PC, Amelin Y, Naldrett AJ (2000) Contrasting petrological and geochemical relationships in the Voisey’s Bay and Mushuau intrusions, Labrador, Canada: implications for ore genesis. Econ Geol 95:771–799

    Article  Google Scholar 

  • Li C, Naldrett AJ, Ripley EM (2001) Critical factors for the formation of a nickel-copper deposit in an evolved magma system: lessons from a comparison of the Pants Lake and the Voisey’s Bay sulfide occurrences in Labrador, Canada. Miner Depos 36:85–92

    Article  Google Scholar 

  • Lightfoot PC, Keays RR (2005) Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk Region: implications for the origin of the Ni–Cu–PGE sulfide ores. Econ Geol 100:439–462

    Article  Google Scholar 

  • Lightfoot PC, Naldrett AJ, Gorbachev NS, Doherty W, Fedorenko VA (1990) Geochemistry of the Siberian Trap of the Noril’sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib Mineral Petrol 104:631–644

    Article  Google Scholar 

  • Lightfoot PC, Keays RR, Morrison GG, Bite A, Farrell KP (1997a) Geochemical relationships in the Sudbury igneous complex: origin of the main mass and offset dykes. Econ Geol 92:289–307

    Google Scholar 

  • Lightfoot PC, Keays RR, Morrison GG, Bite A, Farrell KP (1997b) Geologic and geochemical relationships between the contact sublayer, inclusions and the main mass of the sudbury igneous complex: a case study of the whistle mine embayment. Econ Geol 92:647–673

    Google Scholar 

  • Ludwig KR (1993) ISOPLOT: a plotting and regression program for radiogenic isotope data. Version 2.82. USGS Open File Report 91-445, pp 1–45

  • Lunar R, Garcia Palomero F, Ortega L, Sierra J, Moreno T, Prichard H (1997) Ni–Cu–(PGM) mineralization associated with mafic and ultramafic rocks: the recently discovered Aguablanca ore deposit, SW Spain. In: Papunen H (ed) Mineral deposits: research and exploration. Balkema, Rotterdam, pp 463–466

    Google Scholar 

  • Makkonen HV (1996) 1.9 Ga tholeiitic magmatism and related Ni–Cu deposition in the Juva area, SE Finland. Bull Geol Surv Finl 386:101

    Google Scholar 

  • Marcoux E, Pascual E, Onezime J (2002) Hydrothermalisme ante-Hercynien en Sud-Iberie: apport de la geochimie isotopique du plomb. Compte Rendu Academie Sciences Paris Geosciences 334:259–265

    Article  Google Scholar 

  • Martín Estévez JR, Ortega L, Lunar R, García Palomero F (2000) Características texturales y geoquímicas de la pirita en la mineralización intramagmática de Ni-Cu-PGE de Aguablanca (Badajoz). Cuad Lab Xeol Laxe 25:107–110

    Google Scholar 

  • Mateus A, Jesus AP, Oliveira V, Gonçalves MA, Rosa C (2001) Vanadiferous iron–titanium ores in Gabbroic Series of the Beja Igneous Complex (Odivelas, Portugal): remarks on their possible economic interest. Estud Notas Trab Inst Geol Min 43:3–16

    Google Scholar 

  • Mathez EA (1989) Interactions involving fluids in the Stillwater and Bushveld complexes: observations from the rocks. In: Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4:167–180

  • Mathez EA, Peach CL (1989) The geochemistry of the platinum-group elements in mafic and ultramafic rocks. In: Withney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4:33–44

  • Matthai SK, Henley RW, Bacigalupo-Rose S, Binns RA, Andrew AS, Carr AR, French DH, McAndrew J, Kavanagh ME (1995) Intrusion related, high temperature gold-quartz veining in the Cosmopolitan Howley metasedimentary rock-hosted gold deposit, N Territory, Australia. Econ Geol 90:1012–1045

    Article  Google Scholar 

  • McDonough WF, Frey FA (1989) REE in upper mantle rocks. In: Lipin B, McKay GR (eds) Geochemistry and mineralogy of rare earth elements. Rev Miner 21:99–145

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Metcalfe P, McClaren M (2003) The Pacific nickel complex: profile of an environment for magmatic Ni-Cu deposits in a transpressive continental margin setting. In: GAC-MAC Annual Meeting, Vancouver 2003, session SS14

  • Middlemost EAK (1985) Magmas and magmatic rocks. Longman, London, p 266

    Google Scholar 

  • Montero P, Salman K, Bea F, Azor A, Exposito I, Lodeiro F, Martinez Poyatos D, Simancas F (2000) New data on the geochronology of the Ossa Morena Zone, Iberian Massif. In: Variscan-Appalachian dynamics: the building of the Upper Paleozoic basement. Galicia 2000, A Coruña, Spain

  • Nägler T (1990) Sm–Nd, Rb–Sr and common lead isotope geochemistry on fine-grained sediments of the Iberian Massif. Ph.D. thesis, Swiss Federal Institute Technology Zurich, 139 pp. Swiss Federal Institute Technology, Zurich, p 139

  • Naldrett AJ (1989) Magmatic sulfide deposits. Oxford University Press, London, UK, p 186

    Google Scholar 

  • Naldrett AJ (1992) A model for the Ni–Cu–PGE ores of the Noril’sk region and the application to other areas of flood basalt. Econ Geol 87:1945–1962

    Google Scholar 

  • Naldrett AJ (1999) World class Ni–Cu–PGE deposits: key factors in their genesis. Miner Depos 34:227–240

    Article  Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry and exploration. Springer, Berlin Heidelberg New York, p 727

    Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks: part 2: structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74

    Article  Google Scholar 

  • Ortega L, Moreno T, Lunar R, Prichard H, Sierra J, Bomati O, Fisher P, Garcia Palomero F (1999) Minerales del grupo del platino y fases asociadas en el depósito de Ni–Cu–(EGP) de Aguablanca, SW España. Geogaceta 25:155–158

    Google Scholar 

  • Ortega L, Lunar R, Garcia Palomero F, Martin Estevez JR (2000) Evidencias de fraccionamiento en el yacimiento intramagmático de Ni–Cu–EGP de Aguablanca (Badajoz). Cuad Lab Xeol Laxe 25:111–114

    Google Scholar 

  • Ortega L, Lunar R, Garcia Palomero F, Moreno T, Prichard HM (2001) Removilización de minerales del grupo del platino en el yacimiento de Ni–Cu–EGP de Aguablanca (Badajoz). Bol Soc Esp Mineral 24-A:175–176

    Google Scholar 

  • Ortega L, Lunar R, García Palomero F, Moreno T, Prichard HM (2002) Características geológicas y mineralógicas del yacimiento de Ni–Cu–EGP de Aguablanca (Badajoz). Bol Soc Esp Mineral 25:57–78

    Google Scholar 

  • Ortega L, Lunar R, Garcia Palomero F, Moreno T, Martin Estevez JR, Prichard HM, Fisher PC (2004) The Aguablanca Ni–Cu–PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can Mineral 42:325–350

    Google Scholar 

  • Papunen H (2003) Ni–Cu sulfide deposits in mafic–ultramafic orogenic intrusions—examples from the Svecofennian areas, Finland. In: Eliopoulos DG et al (ed) Mineral exploration and sustainable development. Millpress Rotterdam, Rotterdam, pp 551–554

    Google Scholar 

  • Patiño Douce AE, Castro A, El-Biad M (1997) Thermal evolution and tectonic implications of spinel–cordierite granulites from the Aracena Metamorphic Belt, Southwest Spain. GAC-MAC Annual Meeting, Ottawa, Abstracts volume 22, p A113

  • Pearce JA (1996) User’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks. Applications for massive sulphide exploration. Geol Assoc Can Short Course 12:79–114

  • Pin C, Liñan E, Pascual E, Donaire T, Valenzuela E (1999) Late Proterozoic crustal growth in Ossa Morena: Nd isotope and trace element evidence from the Sierra de Cordoba volcanics. XV Reunion Geologia Oeste Peninsular, Abstracts volume, pp 215–218

  • Piña R, Lunar R, Ortega L, Gervilla F, Alapieti T, Martínez C (2004) Origen de los fragmentos máficos-ultramáficos de la brecha mineralizada del yacimiento de Ni-Cu-EGP de Aguablanca (Badajoz). Macla (Madrid) 2:19–20

    Google Scholar 

  • Piña R, Gervilla F, Ortega L, Lunar R (2005) Geochemistry and mineralogy of platinum-group elements in the Aguablanca Ni–Cu deposit (SW Spain). In: Törmanen TO, Alapieti T (eds) Platinum group elements—from genesis to beneficiation and environmental impact. 10th International Platinum Symposium, Oulu, Finland, pp 215–218

  • Pons J (1982) Un modele d’evolution de complexes plutoniques: Gabbros et granitoies de la Sierra Morena Occidentale (Espagne). Doctoral thesis. Laboratoire Geologie Petrologie, Université Paul Sabatier, Tolouse, p 451

  • Pous J, Muñoz G, Heise W, Melgarejo JC, Quesada C (2004) Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite. Earth Planet Sci Lett 217:435–450

    Article  Google Scholar 

  • Quesada C, Florido P, Gumiel P, Osborne J, Larrea F, Baeza L, Ortega C, Tornos F, Sigüenza J (1987) Mapa Geológico Minero de Extremadura. Junta de Extremadura, Direccion General Industria, Energia y Minas, p 131

  • Quesada C, Bellido F, Dallmeyer RD, Gil Ibarguchi I, Oliveira TJ, Perez Estaun A, Ribeiro A (1991) Terranes within the Iberian Massif: correlations with West Africa sequences. In: Dallmeyer RD (ed) The West African orogens and Circum-Atlantic correlations. Springer, Berlin Heidelberg New York, pp 267–294

    Google Scholar 

  • Ripley E (1990) Platinum group element geochemistry of Cu–Ni mineralization in the basal zone of the Babbit Deposit, Duluth Complex, Minnesota. Econ Geol 85:830–841

    Google Scholar 

  • Ripley EM, Butler BK, Taib NI, Lee I (1993) Hydrothermal alteration in the Babbitt Cu–Ni deposit, Duluth Complex: mineralogy and hydrogen isotope systematics. Econ Geol 88:679–696

    Google Scholar 

  • Roberts S, Sanderson DJ, Dee S, Gumiel P (1991) Tectonic setting and fluid evolution of auriferous quartz veins from La Codosera area, Western Spain. Econ Geol 86:1012–1022

    Google Scholar 

  • Rodas M, Luque FJ, Barrenechea JF, Fernandez Caliani JC, Miras A, Fernandez Rodriguez C (2000) Graphite occurrences in the low pressure/high temperature metamorphic belt of the Sierra de Aracena (southern Iberian Massif). Mineral Mag 64:801–814

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, Essex, p 352

    Google Scholar 

  • Romeo I, Lunar R, Capote R, Dunning GR, Piña R, Ortega L (2004) Edades de cristalización U–Pb en circones del complejo ígneo de Santa Olalla de Cala: implicaciones en la edad del yacimiento de Ni–Cu-EGP de Aguablanca (Badajoz). Macla (Madrid) 2:29–30

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust—a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Ryan B (2000) The Nain Churchill boundary and the Nain plutonic suite: a regional perspective on the geologic setting of the Voisey’s Bay Ni–Cu–Co deposit. Econ Geol 95:703–724

    Article  Google Scholar 

  • Saint Blanquat M, Tikoff B, Teyssier C, Vigneresse JL (1998) Transpressional kinematics and magmatic arcs. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics. Geol Soc Lond Spec Vol 135:327–340

  • Sanchez Carretero R, Eguiluz L, Pascual E, Carracedo M (1990) Ossa Morena Zone: igneous rocks. In: Martinez E, Dallmeyer RD (eds) Pre-Mesozoic geology of Iberia. Springer, Berlin Heidelberg New York, pp 292–313

    Google Scholar 

  • Sanderson DJ, Zhang X (1999) Critical stress localization of flow associated with deformation of well-fractured rock masses, with implications for mineral deposits. In: McCaffrey KJW, Lonergan L, Wilkinson JJ (eds) Fractures, fluid flow and mineralization. Geol Soc Lond Spec Vol 155:69–81

  • Schäfer HJ (1990) Geochronological investigations in the Ossa Morena Zone, SW Spain. Doctoral thesis. Swiss Federal Institute Technology, Zurich, p 153

  • Shengao Y, Zhaochiong Z, Denghong W, Bailin C, Lixin H, Gang Z (2003) Kalatongke magmatic copper–nickel sulfide deposit. In: Mao J, Goldfarb RJ, Seltmann R, Wang D, Xiao W, Hart CRJ (eds) Tectonic evolution and the metallogeny of the Chinese Altay and Tianshan, pp 131–151

  • Simancas JF, Carbonell R, Gonzalez Lodeiro F, Perez Estaun A, Juhlin C, Ayarza P, Kashubin A, Azor A, Martínez Poyatos D, Ruiz Almodovar G, Pascual E, Saez R, Expósito I (2003) Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 22:1962–1974

    Article  Google Scholar 

  • Skirrow RG, Sims JP (1999) Genesis and setting of intrusion hosted Ni–Cu mineralization at Las Aguilas, San Luis province, Argentina: implications for exploration of an Ordovician arc. Explor Min Geol 8:1–20

    Google Scholar 

  • Spiering ED, Rodriguez Pevida L, Castelo JM, Garcia Nieto J, Martinez C (2005) Aguablanca: a new nickel mine in a potential new Ni/Cu and IOCG belt of southern Spain and Portugal. Proceedings Geological Society Nevada. Symposium 2005

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steiger RH, Jäeger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–363

    Article  Google Scholar 

  • Stumpfl EF (1993) Fluids: a prerequisite for platinum metals mineralization. In: Fenoll P, Torres J, Gervilla F (eds) Current research in geology applied to ore deposits, Granada, pp 15–21

  • Suarez S, Velasco F, Yusta I (2005) Caracterización química y mineralógica de suelos en el yacimiento magmático Ni–Cu de Aguablanca, Badajoz (España). Bol Soc Esp Mineral 3:201–202

    Google Scholar 

  • Taylor SRM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Thompson JFH (1984) Acadian synorogenic mafic intrusions in the Maine Appalachians. Am J Sci 284:462–483

    Article  Google Scholar 

  • Thompson JFH, Nixon F, Siversten R (1980) The geology of the Vakkerlien nickel prospect, Kvikne, Norway. Bull Geol Soc Finl 52:3–21

    Google Scholar 

  • Tornos F, Casquet C (2005) A new scenario for related IOCG and Ni–(Cu) mineralisation: the relationship with giant mid-crustal mafic intrusion, Variscan Iberian Massif. Terra Nova 17:286–290

    Article  Google Scholar 

  • Tornos F, Chiaradia M (2004) Plumbotectonic evolution of the Ossa Morena Zone (Iberian Peninsula): tracing the influence of mantle–crust interaction in ore forming processes. Econ Geol 99:965–985

    Article  Google Scholar 

  • Tornos F, Velasco F (2002) The Sultana orebody (Ossa Morena Zone, Spain): insights into the evolution of Cu–(Au–Bi) mesothermal mineralization. In: Blundell DJ (ed) GEODE Study Centre, Grenoble, p 17

  • Tornos F, Casquet C, Galindo C, Canales A, Velasco F (1999) The genesis of the Variscan ultramafic-hosted magmatic Cu–Ni deposit of Aguablanca, SW Spain. In: Stanley et al (eds) Mineral deposits: processes to processing. Balkema, Rotterdam, pp 795–798

    Google Scholar 

  • Tornos F, Casquet C, Velasco F, Galindo C, Canales A (2000) Las mineralizaciones de Cu–Ni de Aguablanca: un caso inusual de mineralizacion discordante en rocas ultrabásicas (PICG n°427). Temas Geol Min 30:183–191

    Google Scholar 

  • Tornos F, Casquet C, Galindo C, Velasco F, Canales A (2001) A new style of Ni–Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc, Aguablanca, Spain. Miner Depos 36:700–706

    Article  Google Scholar 

  • Tornos F, Casquet C, Galindo C, Velasco F, Canales A (2002a) The Aguablanca Ni–Cu orebody (Ossa Morena Zone, SW Spain): geologic and geochemical features. Bol Soc Esp Mineral 25:99–116

    Google Scholar 

  • Tornos F, Casquet C, Relvas J, Barriga F, Saez R (2002b) The relationship between ore deposits and oblique tectonics: the SW Iberian Variscan Belt. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits: an evolving orogen. Geol Soc Lond Spec Publ 204:179–198

  • Tornos F, Inverno C, Casquet C, Mateus A, Ortiz G, Oliveira V (2004) The metallogenic evolution of the Ossa Morena Zone. J Iber Geol 30:143–180

    Google Scholar 

  • Tornos F, Casquet C, Relvas J (2005) The metallogenesis of transpressional orogens: the Variscan of SW Iberia. Ore Geol Rev 27:133–163

    Article  Google Scholar 

  • Tosdal RM, Nutt CJ (1998) Formation of sedimentary rock-hosted (Carlin-type) Au deposit of the Carlin Trend along an Eocene accommodation zone. Geological Society of America Abstracts with Programs, vol 30

  • Unrug R, Haranczyk C, Chocyk JM (1999) Eastern Avalonian and Armorican–Cadomian terranes of Central Europe and Caledonian-Variscan evolution of the polydeformed Krakow mobile belt; geological constraints. Tectonophysics 302:133–157

    Article  Google Scholar 

  • Velasco F (1976) Mineralogía y metalogenia de las skarns de Santa Olalla (Huelva). Doctoral thesis, Universidad del Pais Vasco, Bilbao

  • Winchester JH, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle. Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

Download references

Acknowledgments

This study has been funded by the Spanish DGI-FEDER project BTE2003-290 and the IGME project 2004012 in the framework of the GEODE project (European Science Foundation). We acknowledge PRESUR and Rio Narcea, particularly José Luis Canto and Manuel Mesa, for facilitating the access to the mine properties and for logging drill core. A.I. would like to thank Mick Kunk from the USGS Argon Thermochronology Lab in Denver for helping and supervising the Ar–Ar geochronology and Rebecca Morris for the careful mica separation. We also would like to thank Angel Canales, Carmen Conde, Lorena Luceño, Casimiro Maldonado, Diego Morata, and David Sigüenza as well as the Department of Geology of the Aguablanca Mine for their help in the interpretation of this deposit and related ones in the Ossa Morena Zone, as well as Daniel Layton Matthews and David Lentz for the critical reviews of an early version of this work. The manuscript has been critically reviewed by Joaquín Proenza, John Thompson, Reid Keays, and, especially, Bernd Lehmann who helped to significantly improve and clarify the original text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Tornos.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

126_2006_90_MOESM1_ESM.doc

126_2006_90_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tornos, F., Galindo, C., Casquet, C. et al. The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex. Miner Deposita 41, 737–769 (2006). https://doi.org/10.1007/s00126-006-0090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-006-0090-6

Keywords

Navigation